19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Advanced electronic skin devices for healthcare applications

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review summarized recent progress in skin-inspired electronic devices and their applications in human health monitoring and therapy systems.

          Abstract

          Electronic skin, a kind of flexible electronic device and system inspired by human skin, has emerged as a promising candidate for wearable personal healthcare applications. Wearable electronic devices with skin-like properties will provide platforms for continuous and real-time monitoring of human physiological signals such as tissue pressure, body motion, temperature, metabolites, electrolyte balance, and disease-related biomarkers. Transdermal drug delivery devices can also be integrated into electronic skin to enhance its non-invasive, real-time dynamic therapy functions. This review summarizes the recent progress in electronic skin devices for applications in human health monitoring and therapy systems as well as several potential mass production technologies such as inkjet printing and 3D printing. The opportunities and challenges in broadening the applications of electronic skin devices in practical healthcare are also discussed.

          Related collections

          Most cited references209

          • Record: found
          • Abstract: found
          • Article: not found

          Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers.

          The development of an electronic skin is critical to the realization of artificial intelligence that comes into direct contact with humans, and to biomedical applications such as prosthetic skin. To mimic the tactile sensing properties of natural skin, large arrays of pixel pressure sensors on a flexible and stretchable substrate are required. We demonstrate flexible, capacitive pressure sensors with unprecedented sensitivity and very short response times that can be inexpensively fabricated over large areas by microstructuring of thin films of the biocompatible elastomer polydimethylsiloxane. The pressure sensitivity of the microstructured films far surpassed that exhibited by unstructured elastomeric films of similar thickness, and is tunable by using different microstructures. The microstructured films were integrated into organic field-effect transistors as the dielectric layer, forming a new type of active sensor device with similarly excellent sensitivity and response times.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoringand Personal Healthcare.

            Flexible and stretchable physical sensors that can measure and quantify electrical signals generated by human activities are attracting a great deal of attention as they have unique characteristics, such as ultrathinness, low modulus, light weight, high flexibility, and stretchability. These flexible and stretchable physical sensors conformally attached on the surface of organs or skin can provide a new opportunity for human-activity monitoring and personal healthcare. Consequently, in recent years there has been considerable research effort devoted to the development of flexible and stretchable physical sensors to fulfill the requirements of future technology, and much progress has been achieved. Here, the most recent developments of flexible and stretchable physical sensors are described, including temperature, pressure, and strain sensors, and flexible and stretchable sensor-integrated platforms. The latest successful examples of flexible and stretchable physical sensors for the detection of temperature, pressure, and strain, as well as their novel structures, technological innovations, and challenges, are reviewed first. In the next section, recent progress regarding sensor-integrated wearable platforms is overviewed in detail. Some of the latest achievements regarding self-powered sensor-integrated wearable platform technologies are also reviewed. Further research direction and challenges are also proposed to develop a fully sensor-integrated wearable platform for monitoring human activity and personal healthcare in the near future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The rise of plastic bioelectronics.

              Plastic bioelectronics is a research field that takes advantage of the inherent properties of polymers and soft organic electronics for applications at the interface of biology and electronics. The resulting electronic materials and devices are soft, stretchable and mechanically conformable, which are important qualities for interacting with biological systems in both wearable and implantable devices. Work is currently aimed at improving these devices with a view to making the electronic-biological interface as seamless as possible.
                Bookmark

                Author and article information

                Journal
                JMCBDV
                Journal of Materials Chemistry B
                J. Mater. Chem. B
                Royal Society of Chemistry (RSC)
                2050-750X
                2050-7518
                January 2 2019
                2019
                : 7
                : 2
                : 173-197
                Affiliations
                [1 ]Collaborative Innovation Center of Advanced Microstructures
                [2 ]Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials
                [3 ]School of Electronic Science and Engineering
                [4 ]Nanjing University
                [5 ]210093 Nanjing
                Article
                10.1039/C8TB02862A
                32254546
                8b541163-1dc9-431b-8ce5-1a5ee90ec274
                © 2019

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article