Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The difference between the CB(1) and CB(2) cannabinoid receptors at position 5.46 is crucial for the selectivity of WIN55212-2 for CB(2).

      Molecular pharmacology
      Benzoxazines, Binding Sites, Calcium Channel Blockers, pharmacology, Cells, Cultured, Humans, Hydrocarbons, Aromatic, metabolism, Indoles, chemistry, Models, Molecular, Morpholines, Mutagenesis, Site-Directed, Naphthalenes, Receptors, Cannabinoid, Receptors, Drug, drug effects, genetics, Structure-Activity Relationship

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It has been reported that WIN55212-2, a prototypic aminoalkylindole, has higher affinity for CB(2) than for CB(1). To explain the selectivity of WIN55212-2 for CB(2), molecular modeling studies were performed to probe the interacting sites between WIN55212-2 and cannabinoid receptors. In TMH5 the position 5.46 is a Phe in CB(2) versus a Val in CB(1). Docking of WIN55212-2 into the models of CB(1) and CB(2) predicts that F5.46 will result in a greater aromatic stacking of CB(2) with WIN55212-2. Using site-directed mutagenesis, this hypothesis was tested by exchanging the amino acids at position 5.46 between CB(1) and CB(2). Two mutations, including a Phe to Val mutation at the position 5.46 in CB(2) (CB2F5. 46V), and a corresponding Val to Phe mutation at the position 5.46 in CB(1) (CB(1)V5.46F), were made. The mutant receptors were transfected into 293 cells, and stable cell lines expressing similar numbers of receptors as wild-type receptors were chosen for additional ligand binding and cAMP accumulation studies. In ligand- binding assays, the CB(2)F5.46V mutation decreased the affinity of WIN55212-2 for CB(2) by 14-fold. In contrast, the CB(1)V5.46F mutation increased the affinity of WIN55212-2 for CB(1) by 12-fold. However, these mutations did not change the affinity of HU-210, CP-55940, and anandamide for CB(1) and CB(2). In cAMP accumulation assays, the changes in EC(50) values of WIN55212-2 were consistent with the changes in its binding affinity caused by the mutations. These results strongly support the hypothesis that the selectivity of WIN55212-2 for CB(2) over CB(1) is attributable to the change from Val in CB(1) at position 5.46 to Phe in CB(2).

          Related collections

          Author and article information

          Comments

          Comment on this article

          Similar content162

          Cited by6