Influenza virus is the pathogen of influenza (flu) and millions of people suffer from the infection worldwide, posing a significant health risk. The current influenza vaccines induce neutralizing antibodies against hemagglutinin (HA) to achieve strain-specific neutralization. The effectiveness of seasonal vaccines is usually low and unpredictable because of the antigenic variation and genetic plasticity of viruses, as well as the interference of preexisting immunity. A universal influenza vaccine is urgently needed to prevent a wide variety of influenza viruses. Nevertheless, reaching this difficult optimal goal requires a step-by-step approach. Innovative strategies and vaccine platforms are being developed in order to generate robust cross-protective immunity. In this review, we summarize candidate influenza vaccines that meet two criteria: first, they are designed to provide protection against multiple influenza viruses; second, they had passed regulatory evaluations and have entered various stages of clinical trials. We discuss these vaccine candidates based on the different vaccine-production platforms, with the focus on antigen selection, design, adjuvants, immunomodulators, and routes of vaccine delivery in the development of universal influenza vaccines.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.