0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Disposable and Flexible Paper‐Based Optoelectronic Synaptic Devices for Physical Reservoir Computing

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Health monitoring using wearable artificial intelligence (AI) sensors with sensing and cognitive capabilities has garnered significant attention. The development of self‐contained AI sensors that can operate with low power consumption, akin to the human brain, is necessary. Physical reservoir computing (PRC), which mimics the human brain using physical phenomena, offers a low‐power consumption architecture. Nevertheless, creating a flexible and easily disposable sensors using PRC capable of processing optical signals with sub‐second response times suitable for biological signals presents a challenge. In this study, a disposable and flexible paper‐based optoelectronic synaptic devices are designed, which are composed of nanocellulose and ZnO nanoparticles, for PRC. This device exhibits synaptic photocurrent in response to optical input. To assess its performance, a classification and time‐series forecasting tasks are conducted. The memory capacity of short‐term memory task, indicating the device's ability to store past information, is 1.8. The device can recognize handwritten digits with an accuracy of 88%. These results highlight the potential of the device for PRC. In addition, subjecting the device to 1000 rounds of bending do not affect its accuracy. Furthermore, the device burn in a few seconds, much like regular office paper, demonstrating its disposability.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          High-performance medicine: the convergence of human and artificial intelligence

          Eric Topol (2019)
          The use of artificial intelligence, and the deep-learning subtype in particular, has been enabled by the use of labeled big data, along with markedly enhanced computing power and cloud storage, across all sectors. In medicine, this is beginning to have an impact at three levels: for clinicians, predominantly via rapid, accurate image interpretation; for health systems, by improving workflow and the potential for reducing medical errors; and for patients, by enabling them to process their own data to promote health. The current limitations, including bias, privacy and security, and lack of transparency, along with the future directions of these applications will be discussed in this article. Over time, marked improvements in accuracy, productivity, and workflow will likely be actualized, but whether that will be used to improve the patient-doctor relationship or facilitate its erosion remains to be seen.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Edge Computing: Vision and Challenges

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ZnO nanowire UV photodetectors with high internal gain.

              ZnO nanowire (NW) visible-blind UV photodetectors with internal photoconductive gain as high as G approximately 108 have been fabricated and characterized. The photoconduction mechanism in these devices has been elucidated by means of time-resolved measurements spanning a wide temporal domain, from 10-9 to 102 s, revealing the coexistence of fast (tau approximately 20 ns) and slow (tau approximately 10 s) components of the carrier relaxation dynamics. The extremely high photoconductive gain is attributed to the presence of oxygen-related hole-trap states at the NW surface, which prevents charge-carrier recombination and prolongs the photocarrier lifetime, as evidenced by the sensitivity of the photocurrrent to ambient conditions. Surprisingly, this mechanism appears to be effective even at the shortest time scale investigated of t < 1 ns. Despite the slow relaxation time, the extremely high internal gain of ZnO NW photodetectors results in gain-bandwidth products (GB) higher than approximately 10 GHz. The high gain and low power consumption of NW photodetectors promise a new generation of phototransistors for applications such as sensing, imaging, and intrachip optical interconnects.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Advanced Electronic Materials
                Adv Elect Materials
                2199-160X
                2199-160X
                February 22 2024
                Affiliations
                [1 ] Department of Applied Electronics Graduate School of Advanced Engineering Tokyo University of Science Katsushika Tokyo 125‐8585 Japan
                Article
                10.1002/aelm.202300749
                8ab03d5c-29e4-4bee-8e90-7318b7b7eb37
                © 2024

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article