8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Characterization of a specific odorant receptor for linalool in the Chinese citrus fly Bactrocera minax (Diptera: Tephritidae)

      , , , , ,
      Insect Biochemistry and Molecular Biology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies

          Motivation: Phylogenies are increasingly used in all fields of medical and biological research. Moreover, because of the next-generation sequencing revolution, datasets used for conducting phylogenetic analyses grow at an unprecedented pace. RAxML (Randomized Axelerated Maximum Likelihood) is a popular program for phylogenetic analyses of large datasets under maximum likelihood. Since the last RAxML paper in 2006, it has been continuously maintained and extended to accommodate the increasingly growing input datasets and to serve the needs of the user community. Results: I present some of the most notable new features and extensions of RAxML, such as a substantial extension of substitution models and supported data types, the introduction of SSE3, AVX and AVX2 vector intrinsics, techniques for reducing the memory requirements of the code and a plethora of operations for conducting post-analyses on sets of trees. In addition, an up-to-date 50-page user manual covering all new RAxML options is available. Availability and implementation: The code is available under GNU GPL at https://github.com/stamatak/standard-RAxML. Contact: alexandros.stamatakis@h-its.org Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data

            Massively-parallel cDNA sequencing has opened the way to deep and efficient probing of transcriptomes. Current approaches for transcript reconstruction from such data often rely on aligning reads to a reference genome, and are thus unsuitable for samples with a partial or missing reference genome. Here, we present the Trinity methodology for de novo full-length transcriptome reconstruction, and evaluate it on samples from fission yeast, mouse, and whitefly – an insect whose genome has not yet been sequenced. Trinity fully reconstructs a large fraction of the transcripts present in the data, also reporting alternative splice isoforms and transcripts from recently duplicated genes. In all cases, Trinity performs better than other available de novo transcriptome assembly programs, and its sensitivity is comparable to methods relying on genome alignments. Our approach provides a unified and general solution for transcriptome reconstruction in any sample, especially in the complete absence of a reference genome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research.

              We present here Blast2GO (B2G), a research tool designed with the main purpose of enabling Gene Ontology (GO) based data mining on sequence data for which no GO annotation is yet available. B2G joints in one application GO annotation based on similarity searches with statistical analysis and highlighted visualization on directed acyclic graphs. This tool offers a suitable platform for functional genomics research in non-model species. B2G is an intuitive and interactive desktop application that allows monitoring and comprehension of the whole annotation and analysis process. Blast2GO is freely available via Java Web Start at http://www.blast2go.de. http://www.blast2go.de -> Evaluation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Insect Biochemistry and Molecular Biology
                Insect Biochemistry and Molecular Biology
                Elsevier BV
                09651748
                July 2020
                July 2020
                : 122
                : 103389
                Article
                10.1016/j.ibmb.2020.103389
                32360457
                8a05da88-53fe-4f50-9922-be4ef264f4a2
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article