5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Functional Characterization of Two Antenna-Enriched Odorant-Binding Proteins From Bactrocera minax (Diptera: Tephritidae)

      1 , 1 , 2 , 1 , 1 , 1
      Journal of Economic Entomology
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Olfaction is of great significance for insect mate-seeking and host-locating behaviors. Insect odorant-binding proteins (OBPs), especially those antenna-enriched OBPs, are thought to discriminate, capture and transport odorant molecules to olfactory receptors, but this has not been fully clarified in Bactrocera minax (Enderlein), an economically important pest of citrus crops. Our previous studies showed that seven OBP genes (BminOBP1-7) were identified from B. minax adults via a head transcriptome analysis, of which only BminOBP3 and 6 were highly expressed in antennae, suggesting an olfactory role. To confirm their functions, here, BminOBP3 and 6 were cloned, expressed in Escherichia coli cells. Binding properties of the recombinant BminOBPs with 13 volatiles, most of which can elicit a significant behavioral response from B. minax adults, were determined by fluorescent competitive binding assays. The results showed that Both BminOBP3 and 6 exhibited a remarkable selectivity towards the 13 ligands tested. BminOBP3 displayed strong binding affinity only with undecanol. BminOBP6 demonstrated strong binding affinity with undecanol and limonene among 13 ligands tested. Undecanol is believed to be main sex pheromone component of B. minax. Limonene is an important volatile compound enriched in citrus fruits. Taken together, we concluded that BminOBP3 and 6 may play a prominent role in the process of B. minax mate-seeking and host-locating behaviors through recognizing and transporting these volatiles. It is conceivable that this study will increase our molecular understanding of B. minax olfaction, facilitating the development of OBP-based behavioral interference that is potentially useful for the integrated management of B. minax.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes.

          Our knowledge of the molecular basis of odorant reception in insects has grown exponentially over the past decade. Odorant receptors (ORs) from moths, fruit flies, mosquitoes, and the honey bees have been deorphanized, odorant-degrading enzymes (ODEs) have been isolated, and the functions of odorant-binding proteins (OBPs) have been unveiled. OBPs contribute to the sensitivity of the olfactory system by transporting odorants through the sensillar lymph, but there are competing hypotheses on how they act at the end of the journey. A few ODEs that have been demonstrated to degrade odorants rapidly may act in signal inactivation alone or in combination with other molecular traps. Although ORs in Drosophila melanogaster respond to multiple odorants and seem to work in combinatorial code involving both periphery and antennal lobes, reception of sex pheromones by moth ORs suggests that their labeled lines rely heavily on selectivity at the periphery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster.

            Olfaction is of considerable importance to many insects in behaviors critical for survival and reproduction, including location of food sources, selection of mates, recognition of colony con-specifics, and determination of oviposition sites. An ubiquitous, but poorly understood, component of the insect's olfactory system is a group of odorant-binding proteins (OBPs) that are present at high concentrations in the aqueous lymph surrounding the dendrites of olfactory receptor neurons. OBPs are believed to shuttle odorants from the environment to the underlying odorant receptors, for which they could potentially serve as odorant presenters. Here we show that the Drosophila genome carries 51 potential OBP genes, a number comparable to that of its odorant-receptor genes. We find that the majority (73%) of these OBP-like genes occur in clusters of as many as nine genes, in contrast to what has been observed for the Drosophila odorant-receptor genes. Two of the presumptive OBP gene clusters each carries an odorant-receptor gene. We also report an intriguing subfamily of 12 putative OBPs that share a unique C-terminal structure with three conserved cysteines and a conserved proline. Members of this subfamily have not previously been described for any insect. We have performed phylogenetic analyses of the OBP-related proteins in Drosophila as well as other insects, and we discuss the duplication and divergence of the genes for this large family. [The sequence data from this study have been submitted to FlyBase. Annotations for these sequences are available as supplementary material at http://www.genome.org.]
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pheromone binding and inactivation by moth antennae

              The antennae of male silk moths are extremely sensitive to the female sex pheromone such that a male moth can find a female up to 4.5 km away. This remarkable sensitivity is due to both the morphological and biochemical design of these antennae. Along the branches of the plumose antennae are the sensilla trichodea, each consisting of a hollow cuticular hair containing two unbranched dendrites bathed in a fluid, the receptor lymph ,3. The dendrites and receptor lymph are isolated from the haemolymph by a barrier of epidermal cells which secreted the cuticular hair. Pheromone molecules are thought to diffuse down 100 A-wide pore tubules through the cuticular wall and across the receptor lymph space to receptors located in the dendritic membrane. To prevent the accumulation of residual stimulant and hence sensory adaptation, the pheromone molecules are subsequently inactivated in an apparent two-step process of rapid 'early inactivation' followed by much slower enzymatic degradation. The biochemistry involved in this sequence of events is largely unknown. We report here the identification of three proteins which interact with the pheromone of the wild silk moth Antheraea polyphemus: a pheromone-binding protein and a pheromone-degrading esterase, both uniquely located in the pheromone-sensitive sensilla; and a second esterase common to all cuticular tissues except the sensilla.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Journal of Economic Entomology
                Oxford University Press (OUP)
                0022-0493
                1938-291X
                December 01 2021
                December 06 2021
                October 20 2021
                December 01 2021
                December 06 2021
                October 20 2021
                : 114
                : 6
                : 2361-2369
                Affiliations
                [1 ]College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, P. R. China
                [2 ]College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P. R. China
                Article
                10.1093/jee/toab199
                a6932785-fb1c-48ef-9d8f-7c4ecd8a9e09
                © 2021

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article