4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Using mechanistic models for the clinical interpretation of complex genomic variation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The sustained generation of genomic data in the last decade has increased the knowledge on the causal mutations of a large number of diseases, especially for highly penetrant Mendelian diseases, typically caused by a unique or a few genes. However, the discovery of causal genes in complex diseases has been far less successful. Many complex diseases are actually a consequence of the failure of complex biological modules, composed by interrelated proteins, which can happen in many different ways, which conferring a multigenic nature to the condition that can hardly be attributed to one or a few genes. We present a mechanistic model, Hipathia, implemented in a web server that allows estimating the effect that mutations, or changes in the expression of genes, have over the whole system of human signaling and the corresponding functional consequences. We show several use cases where we demonstrate how different the ultimate impact of mutations with similar loss-of-function potential can be and how the potential pathological role of a damaged gene can be inferred within the context of a signaling network. The use of systems biology-based approaches, such as mechanistic models, allows estimating the potential impact of loss-of-function mutations occurring in proteins that are part of complex biological interaction networks, such as signaling pathways. This holistic approach provides an elegant alternative to gene-centric approaches that can open new avenues in the interpretation of the genomic variability in complex diseases.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human non-synonymous SNPs: server and survey.

            Human single nucleotide polymorphisms (SNPs) represent the most frequent type of human population DNA variation. One of the main goals of SNP research is to understand the genetics of the human phenotype variation and especially the genetic basis of human complex diseases. Non-synonymous coding SNPs (nsSNPs) comprise a group of SNPs that, together with SNPs in regulatory regions, are believed to have the highest impact on phenotype. Here we present a World Wide Web server to predict the effect of an nsSNP on protein structure and function. The prediction method enabled analysis of the publicly available SNP database HGVbase, which gave rise to a dataset of nsSNPs with predicted functionality. The dataset was further used to compare the effect of various structural and functional characteristics of amino acid substitutions responsible for phenotypic display of nsSNPs. We also studied the dependence of selective pressure on the structural and functional properties of proteins. We found that in our dataset the selection pressure against deleterious SNPs depends on the molecular function of the protein, although it is insensitive to several other protein features considered. The strongest selective pressure was detected for proteins involved in transcription regulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Activities at the Universal Protein Resource (UniProt)

              The mission of the Universal Protein Resource (UniProt) (http://www.uniprot.org) is to provide the scientific community with a comprehensive, high-quality and freely accessible resource of protein sequences and functional annotation. It integrates, interprets and standardizes data from literature and numerous resources to achieve the most comprehensive catalog possible of protein information. The central activities are the biocuration of the UniProt Knowledgebase and the dissemination of these data through our Web site and web services. UniProt is produced by the UniProt Consortium, which consists of groups from the European Bioinformatics Institute (EBI), the SIB Swiss Institute of Bioinformatics (SIB) and the Protein Information Resource (PIR). UniProt is updated and distributed every 4 weeks and can be accessed online for searches or downloads.
                Bookmark

                Author and article information

                Contributors
                joaquin.dopazo@juntadeandalucia.es
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                12 December 2019
                12 December 2019
                2019
                : 9
                : 18937
                Affiliations
                [1 ]ISNI 0000 0000 9542 1158, GRID grid.411109.c, Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocío, ; 41013 Sevilla, Spain
                [2 ]ISNI 0000 0000 9542 1158, GRID grid.411109.c, Bioinformatics in RareDiseases (BiER). Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, ; 41013 Sevilla, Spain
                [3 ]ISNI 0000 0004 0399 600X, GRID grid.418274.c, Bioinformatics and Biostatistics Unit, Centro de Investigación Príncipe Felipe (CIPF), ; 46012 Valencia, Spain
                [4 ]ISNI 0000 0000 9542 1158, GRID grid.411109.c, INB-ELIXIR-es, FPS, Hospital Virgen del Rocío, ; Sevilla, 42013 Spain
                Author information
                http://orcid.org/0000-0001-9598-6965
                http://orcid.org/0000-0003-3318-120X
                Article
                55454
                10.1038/s41598-019-55454-7
                6908734
                31831811
                89f2c344-b668-43e7-8140-b355a3aa53df
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 12 July 2019
                : 28 November 2019
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                cellular signalling networks,systems analysis
                Uncategorized
                cellular signalling networks, systems analysis

                Comments

                Comment on this article