6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Organotypic cancer tissue models for drug screening: 3D constructs, bioprinting and microfluidic chips

      , , , ,
      Drug Discovery Today
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Lab-on-a-chip: microfluidics in drug discovery.

          Miniaturization can expand the capability of existing bioassays, separation technologies and chemical synthesis techniques. Although a reduction in size to the micrometre scale will usually not change the nature of molecular reactions, laws of scale for surface per volume, molecular diffusion and heat transport enable dramatic increases in throughput. Besides the many microwell-plate- or bead-based methods, microfluidic chips have been widely used to provide small volumes and fluid connections and could eventually outperform conventionally used robotic fluid handling. Moreover, completely novel applications without a macroscopic equivalent have recently been developed. This article reviews current and future applications of microfluidics and highlights the potential of 'lab-on-a-chip' technology for drug discovery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow.

            Development of an in vitro living cell-based model of the intestine that mimics the mechanical, structural, absorptive, transport and pathophysiological properties of the human gut along with its crucial microbial symbionts could accelerate pharmaceutical development, and potentially replace animal testing. Here, we describe a biomimetic 'human gut-on-a-chip' microdevice composed of two microfluidic channels separated by a porous flexible membrane coated with extracellular matrix (ECM) and lined by human intestinal epithelial (Caco-2) cells that mimics the complex structure and physiology of living intestine. The gut microenvironment is recreated by flowing fluid at a low rate (30 μL h(-1)) producing low shear stress (0.02 dyne cm(-2)) over the microchannels, and by exerting cyclic strain (10%; 0.15 Hz) that mimics physiological peristaltic motions. Under these conditions, a columnar epithelium develops that polarizes rapidly, spontaneously grows into folds that recapitulate the structure of intestinal villi, and forms a high integrity barrier to small molecules that better mimics whole intestine than cells in cultured in static Transwell models. In addition, a normal intestinal microbe (Lactobacillus rhamnosus GG) can be successfully co-cultured for extended periods (>1 week) on the luminal surface of the cultured epithelium without compromising epithelial cell viability, and this actually improves barrier function as previously observed in humans. Thus, this gut-on-a-chip recapitulates multiple dynamic physical and functional features of human intestine that are critical for its function within a controlled microfluidic environment that is amenable for transport, absorption, and toxicity studies, and hence it should have great value for drug testing as well as development of novel intestinal disease models.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip

              The diverse bacterial populations that comprise the commensal microbiome of the human intestine play a central role in health and disease. A method that sustains complex microbial communities in direct contact with living human intestinal cells and their overlying mucus layer in vitro would thus enable investigations of host–microbiome interactions. Here, we show the extended co-culture of living human intestinal epithelium with stable communities of aerobic and anaerobic human gut microbiota, enabled by a microfluidic intestine-on-a-chip that permits the control and real-time assessment of physiologically relevant oxygen gradients. When compared to aerobic co-culture conditions, the establishment of a transluminal hypoxia gradient in the chip increased intestinal barrier function and sustained a physiologically relevant level of microbial diversity, consisting of over 200 unique operational taxonomic units from 11 different genera, and of an abundance of obligate anaerobic bacteria with ratios of Firmicutes and Bacteroidetes similar to those observed in human faeces. The intestine-on-a-chip may serve as a discovery tool for the development of microbiome-related therapeutics, probiotics and nutraceuticals.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Drug Discovery Today
                Drug Discovery Today
                Elsevier BV
                13596446
                May 2020
                May 2020
                : 25
                : 5
                : 879-890
                Article
                10.1016/j.drudis.2020.03.002
                32165322
                89b3a529-6744-49d3-aa61-246c7b63e225
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article