1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Artificial intelligence in virtual screening: Models versus experiments

      , , ,
      Drug Discovery Today
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          The Protein Data Bank.

          The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            ChEMBL: a large-scale bioactivity database for drug discovery

            ChEMBL is an Open Data database containing binding, functional and ADMET information for a large number of drug-like bioactive compounds. These data are manually abstracted from the primary published literature on a regular basis, then further curated and standardized to maximize their quality and utility across a wide range of chemical biology and drug-discovery research problems. Currently, the database contains 5.4 million bioactivity measurements for more than 1 million compounds and 5200 protein targets. Access is available through a web-based interface, data downloads and web services at: https://www.ebi.ac.uk/chembldb.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints.

              Chun Yap (2011)
              PaDEL-Descriptor is a software for calculating molecular descriptors and fingerprints. The software currently calculates 797 descriptors (663 1D, 2D descriptors, and 134 3D descriptors) and 10 types of fingerprints. These descriptors and fingerprints are calculated mainly using The Chemistry Development Kit. Some additional descriptors and fingerprints were added, which include atom type electrotopological state descriptors, McGowan volume, molecular linear free energy relation descriptors, ring counts, count of chemical substructures identified by Laggner, and binary fingerprints and count of chemical substructures identified by Klekota and Roth. PaDEL-Descriptor was developed using the Java language and consists of a library component and an interface component. The library component allows it to be easily integrated into quantitative structure activity relationship software to provide the descriptor calculation feature while the interface component allows it to be used as a standalone software. The software uses a Master/Worker pattern to take advantage of the multiple CPU cores that are present in most modern computers to speed up calculations of molecular descriptors. The software has several advantages over existing standalone molecular descriptor calculation software. It is free and open source, has both graphical user interface and command line interfaces, can work on all major platforms (Windows, Linux, MacOS), supports more than 90 different molecular file formats, and is multithreaded. PaDEL-Descriptor is a useful addition to the currently available molecular descriptor calculation software. The software can be downloaded at http://padel.nus.edu.sg/software/padeldescriptor. Copyright © 2010 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Journal
                Drug Discovery Today
                Drug Discovery Today
                Elsevier BV
                13596446
                May 2022
                May 2022
                Article
                10.1016/j.drudis.2022.05.013
                35597513
                89b31efe-8c05-4d2b-8316-a2b8459a2e9b
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article