1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Fully Automated Unconstrained Analysis of High-Resolution Mass Spectrometry Data with Machine Learning

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Highly accurate protein structure prediction with AlphaFold

          Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort 1 – 4 , the structures of around 100,000 unique proteins have been determined 5 , but this represents a small fraction of the billions of known protein sequences 6 , 7 . Structural coverage is bottlenecked by the months to years of painstaking effort required to determine a single protein structure. Accurate computational approaches are needed to address this gap and to enable large-scale structural bioinformatics. Predicting the three-dimensional structure that a protein will adopt based solely on its amino acid sequence—the structure prediction component of the ‘protein folding problem’ 8 —has been an important open research problem for more than 50 years 9 . Despite recent progress 10 – 14 , existing methods fall far short of atomic accuracy, especially when no homologous structure is available. Here we provide the first computational method that can regularly predict protein structures with atomic accuracy even in cases in which no similar structure is known. We validated an entirely redesigned version of our neural network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein Structure Prediction (CASP14) 15 , demonstrating accuracy competitive with experimental structures in a majority of cases and greatly outperforming other methods. Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm. AlphaFold predicts protein structures with an accuracy competitive with experimental structures in the majority of cases using a novel deep learning architecture.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Cross-platform Toolkit for Mass Spectrometry and Proteomics

            Mass-spectrometry-based proteomics has become an important component of biological research. Numerous proteomics methods have been developed to identify and quantify the proteins in biological and clinical samples 1 , identify pathways affected by endogenous and exogenous perturbations 2 , and characterize protein complexes 3 . Despite successes, the interpretation of vast proteomics datasets remains a challenge. There have been several calls for improvements and standardization of proteomics data analysis frameworks, as well as for an application-programming interface for proteomics data access 4,5 . In response, we have developed the ProteoWizard Toolkit, a robust set of open-source, software libraries and applications designed to facilitate proteomics research. The libraries implement the first-ever, non-commercial, unified data access interface for proteomics, bridging field-standard open formats and all common vendor formats. In addition, diverse software classes enable rapid development of vendor-agnostic proteomics software. Additionally, ProteoWizard projects and applications, building upon the core libraries, are becoming standard tools for enabling significant proteomics inquiries.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              XCMS Online: a web-based platform to process untargeted metabolomic data.

              Recently, interest in untargeted metabolomics has become prevalent in the general scientific community among an increasing number of investigators. The majority of these investigators, however, do not have the bioinformatic expertise that has been required to process metabolomic data by using command-line driven software programs. Here we introduce a novel platform to process untargeted metabolomic data that uses an intuitive graphical interface and does not require installation or technical expertise. This platform, called XCMS Online, is a web-based version of the widely used XCMS software that allows users to easily upload and process liquid chromatography/mass spectrometry data with only a few mouse clicks. XCMS Online provides a solution for the complete untargeted metabolomic workflow including feature detection, retention time correction, alignment, annotation, statistical analysis, and data visualization. Results can be browsed online in an interactive, customizable table showing statistics, chromatograms, and putative METLIN identities for each metabolite. Additionally, all results and images can be downloaded as zip files for offline analysis and publication. XCMS Online is available at https://xcmsonline.scripps.edu.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of the American Chemical Society
                J. Am. Chem. Soc.
                American Chemical Society (ACS)
                0002-7863
                1520-5126
                August 17 2022
                August 08 2022
                August 17 2022
                : 144
                : 32
                : 14590-14606
                Affiliations
                [1 ]Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russia
                Article
                10.1021/jacs.2c03631
                35939718
                89029974-9714-46e5-99d2-b80a20ab873e
                © 2022

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article