9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Model‐driven design of a minimal medium for Akkermansia muciniphila confirms mucus adaptation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          The abundance of the human intestinal symbiont Akkermansia muciniphila has found to be inversely correlated with several diseases, including metabolic syndrome and obesity. A. muciniphila is known to use mucin as sole carbon and nitrogen source. To study the physiology and the potential for therapeutic applications of this bacterium, we designed a defined minimal medium. The composition of the medium was based on the genome‐scale metabolic model of A. muciniphila and the composition of mucin. Our results indicate that A. muciniphila does not code for GlmS, the enzyme that mediates the conversion of fructose‐6‐phosphate (Fru6P) to glucosamine‐6‐phosphate (GlcN6P), which is essential in peptidoglycan formation. The only annotated enzyme that could mediate this conversion is Amuc‐NagB on locus Amuc_1822. We found that Amuc‐NagB was unable to form GlcN6P from Fru6P at physiological conditions, while it efficiently catalyzed the reverse reaction. To overcome this inability, N‐acetylglucosamine needs to be present in the medium for A. muciniphila growth. With these findings, the genome‐scale metabolic model was updated and used to accurately predict growth of A. muciniphila on synthetic media. The finding that A. muciniphila has a necessity for Glc NAc, which is present in mucin further prompts the adaptation to its mucosal niche.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions.

          The normal intestinal microbiota inhabits the colon mucus without triggering an inflammatory response. The reason for this and how the intestinal mucus of the colon is organized have begun to be unraveled. The mucus is organized in two layers: an inner, stratified mucus layer that is firmly adherent to the epithelial cells and approximately 50 μm thick; and an outer, nonattached layer that is usually approximately 100 μm thick as measured in mouse. These mucus layers are organized around the highly glycosylated MUC2 mucin, forming a large, net-like polymer that is secreted by the goblet cells. The inner mucus layer is dense and does not allow bacteria to penetrate, thus keeping the epithelial cell surface free from bacteria. The inner mucus layer is converted into the outer layer, which is the habitat of the commensal flora. The outer mucus layer has an expanded volume due to proteolytic activities provided by the host but probably also caused by commensal bacterial proteases and glycosidases. The numerous O-glycans on the MUC2 mucin not only serve as nutrients for the bacteria but also as attachment sites and, as such, probably contribute to the selection of the species-specific colon flora. This observation that normal human individuals carry a uniform MUC2 mucin glycan array in colon may indicate such a specific selection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            COBRApy: COnstraints-Based Reconstruction and Analysis for Python

            Background COnstraint-Based Reconstruction and Analysis (COBRA) methods are widely used for genome-scale modeling of metabolic networks in both prokaryotes and eukaryotes. Due to the successes with metabolism, there is an increasing effort to apply COBRA methods to reconstruct and analyze integrated models of cellular processes. The COBRA Toolbox for MATLAB is a leading software package for genome-scale analysis of metabolism; however, it was not designed to elegantly capture the complexity inherent in integrated biological networks and lacks an integration framework for the multiomics data used in systems biology. The openCOBRA Project is a community effort to promote constraints-based research through the distribution of freely available software. Results Here, we describe COBRA for Python (COBRApy), a Python package that provides support for basic COBRA methods. COBRApy is designed in an object-oriented fashion that facilitates the representation of the complex biological processes of metabolism and gene expression. COBRApy does not require MATLAB to function; however, it includes an interface to the COBRA Toolbox for MATLAB to facilitate use of legacy codes. For improved performance, COBRApy includes parallel processing support for computationally intensive processes. Conclusion COBRApy is an object-oriented framework designed to meet the computational challenges associated with the next generation of stoichiometric constraint-based models and high-density omics data sets. Availability http://opencobra.sourceforge.net/
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Akkermansia muciniphila and its role in regulating host functions

              Akkermansia muciniphila is an intestinal bacterium that was isolated a decade ago from a human fecal sample. Its specialization in mucin degradation makes it a key organism at the mucosal interface between the lumen and host cells. Although it was isolated quite recently, it has rapidly raised significant interest as A. muciniphila is the only cultivated intestinal representative of the Verrucomicrobia, one of the few phyla in the human gut that can be easily detected in phylogenetic and metagenome analyses. There has also been a growing interest in A. muciniphila, due to its association with health in animals and humans. Notably, reduced levels of A. muciniphila have been observed in patients with inflammatory bowel diseases (mainly ulcerative colitis) and metabolic disorders, which suggests it may have potential anti-inflammatory properties. The aims of this review are to summarize the existing data on the intestinal distribution of A. muciniphila in health and disease, to provide insight into its ecology and its role in founding microbial networks at the mucosal interface, as well as to discuss recent research on its role in regulating host functions that are disturbed in various diseases, with a specific focus on metabolic disorders in both animals and humans.
                Bookmark

                Author and article information

                Contributors
                clara.belzer@wur.nl
                Journal
                Microb Biotechnol
                Microb Biotechnol
                10.1111/(ISSN)1751-7915
                MBT2
                Microbial Biotechnology
                John Wiley and Sons Inc. (Hoboken )
                1751-7915
                26 January 2018
                May 2018
                : 11
                : 3 ( doiID: 10.1111/mbt2.2018.11.issue-3 )
                : 476-485
                Affiliations
                [ 1 ] Laboratory of Microbiology Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
                [ 2 ] Laboratory of Systems and Synthetic Biology Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
                [ 3 ] Department of Bacteriology and Immunology RPU Immunobiology University of Helsinki Haartmanikatu 4 002940 Helsinki Finland
                Author notes
                [*] [* ]For correspondence. E‐mail clara.belzer@ 123456wur.nl ; Tel. +31 317 483742; Fax +31 317 483829.
                Author information
                http://orcid.org/0000-0003-3289-1576
                http://orcid.org/0000-0001-7554-1723
                http://orcid.org/0000-0001-5845-146X
                http://orcid.org/0000-0002-4346-6084
                http://orcid.org/0000-0002-0273-3166
                http://orcid.org/0000-0001-6922-836X
                Article
                MBT213033
                10.1111/1751-7915.13033
                5902328
                29377524
                88c1f462-6499-4ac7-981d-1ae9fae10e26
                © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 July 2017
                : 08 November 2017
                : 10 November 2017
                Page count
                Figures: 3, Tables: 3, Pages: 10, Words: 6850
                Funding
                Funded by: Netherlands Organization for Scientific Research
                Award ID: 024.002.002
                Categories
                Research Article
                Research Articles
                Custom metadata
                2.0
                mbt213033
                May 2018
                Converter:WILEY_ML3GV2_TO_NLMPMC version:version=5.3.4 mode:remove_FC converted:16.04.2018

                Biotechnology
                Biotechnology

                Comments

                Comment on this article