17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insect Odorscapes: From Plant Volatiles to Natural Olfactory Scenes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Olfaction is an essential sensory modality for insects and their olfactory environment is mostly made up of plant-emitted volatiles. The terrestrial vegetation produces an amazing diversity of volatile compounds, which are then transported, mixed, and degraded in the atmosphere. Each insect species expresses a set of olfactory receptors that bind part of the volatile compounds present in its habitat. Insect odorscapes are thus defined as species-specific olfactory spaces, dependent on the local habitat, and dynamic in time. Manipulations of pest-insect odorscapes are a promising approach to answer the strong demand for pesticide-free plant-protection strategies. Moreover, understanding their olfactory environment becomes a major concern in the context of global change and environmental stresses to insect populations. A considerable amount of information is available on the identity of volatiles mediating biotic interactions that involve insects. However, in the large body of research devoted to understanding how insects use olfaction to locate resources, an integrative vision of the olfactory environment has rarely been reached. This article aims to better apprehend the nature of the insect odorscape and its importance to insect behavioral ecology by reviewing the literature specific to different disciplines from plant ecophysiology to insect neuroethology. First, we discuss the determinants of odorscape composition, from the production of volatiles by plants (section “Plant Metabolism and Volatile Emissions”) to their filtering during detection by the olfactory system of insects (section “Insect Olfaction: How Volatile Plant Compounds Are Encoded and Integrated by the Olfactory System”). We then summarize the physical and chemical processes by which volatile chemicals distribute in space (section “Transportation of Volatile Plant Compounds and Spatial Aspects of the Odorscape”) and time (section “Temporal Aspects: The Dynamics of the Odorscape”) in the atmosphere. The following sections consider the ecological importance of background odors in odorscapes and how insects adapt to their olfactory environment. Habitat provides an odor background and a sensory context that modulate the responses of insects to pheromones and other olfactory signals (section “Ecological Importance of Odorscapes”). In addition, insects do not respond inflexibly to single elements in their odorscape but integrate several components of their environment (section “Plasticity and Adaptation to Complex and Variable Odorscapes”). We finally discuss existing methods of odorscape manipulation for sustainable pest insect control and potential future developments in the context of agroecology (section “Odorscapes in Plant Protection and Agroecology”).

          Related collections

          Most cited references165

          • Record: found
          • Abstract: found
          • Article: not found

          The use of push-pull strategies in integrated pest management.

          Push-pull strategies involve the behavioral manipulation of insect pests and their natural enemies via the integration of stimuli that act to make the protected resource unattractive or unsuitable to the pests (push) while luring them toward an attractive source (pull) from where the pests are subsequently removed. The push and pull components are generally nontoxic. Therefore, the strategies are usually integrated with methods for population reduction, preferably biological control. Push-pull strategies maximize efficacy of behavior-manipulating stimuli through the additive and synergistic effects of integrating their use. By orchestrating a predictable distribution of pests, efficiency of population-reducing components can also be increased. The strategy is a useful tool for integrated pest management programs reducing pesticide input. We describe the principles of the strategy, list the potential components, and present case studies reviewing work on the development and use of push-pull strategies in each of the major areas of pest control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Insect host location: a volatile situation.

            Locating a host plant is crucial for a phytophagous (herbivorous) insect to fulfill its nutritional requirements and to find suitable oviposition sites. Insects can locate their hosts even though the host plants are often hidden among an array of other plants. Plant volatiles play an important role in this host-location process. The recognition of a host plant by these olfactory signals could occur by using either species-specific compounds or specific ratios of ubiquitous compounds. Currently, most studies favor the second scenario, with strong evidence that plant discrimination is due to central processing of olfactory signals by the insect, rather than their initial detection. Furthermore, paired or clustered olfactory receptor neurons might enable fine-scale spatio-temporal resolution of the complex signals encountered when ubiquitous compounds are used.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Abiotic stresses and induced BVOCs.

              Plants produce a wide spectrum of biogenic volatile organic compounds (BVOCs) in various tissues above and below ground to communicate with other plants and organisms. However, BVOCs also have various functions in biotic and abiotic stresses. For example abiotic stresses enhance BVOCs emission rates and patterns, altering the communication with other organisms and the photochemical cycles. Recent new insights on biosynthesis and eco-physiological control of constitutive or induced BVOCs have led to formulation of hypotheses on their functions which are presented in this review. Specifically, oxidative and thermal stresses are relieved in the presence of volatile terpenes. Terpenes, C6 compounds, and methyl salicylate are thought to promote direct and indirect defence by modulating the signalling that biochemically activate defence pathways. Copyright 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                02 August 2019
                2019
                : 10
                : 972
                Affiliations
                [1] 1INRA, Sorbonne Université, INRA, CNRS, UPEC, IRD, University P7, Institute of Ecology and Environmental Sciences of Paris , Paris, France
                [2] 2CEFE, CNRS, EPHE, IRD, Université de Montpellier, Université Paul-Valéry Montpellier , Montpellier, France
                Author notes

                Edited by: Carolina E. Reisenman, University of California, Berkeley, United States

                Reviewed by: Markus Knaden, Max-Planck-Gesellschaft (MPG), Germany; Shannon Bryn Olsson, National Centre for Biological Sciences, India

                *Correspondence: Michel Renou, michel.renou@ 123456inra.fr

                This article was submitted to Invertebrate Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2019.00972
                6688386
                31427985
                8888a584-c7da-4464-85b7-682dd94472c8
                Copyright © 2019 Conchou, Lucas, Meslin, Proffit, Staudt and Renou.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 April 2019
                : 11 July 2019
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 192, Pages: 20, Words: 18707
                Funding
                Funded by: ANR 10.13039/501100001665
                Award ID: ANR15-CE02-010-01
                Categories
                Physiology
                Review

                Anatomy & Physiology
                insect olfaction,plant volatiles,odorscape,volatilome,olfactome,plant-insect interaction,landscape,sensory ecology

                Comments

                Comment on this article