8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Interaction between the respiratory syncytial virus G glycoprotein cytoplasmic domain and the matrix protein.

      The Journal of General Virology
      Amino Acid Sequence, Cell Line, Humans, Molecular Sequence Data, Mutation, Respiratory Syncytial Virus, Human, genetics, metabolism, Viral Envelope Proteins, chemistry, Viral Matrix Proteins, Virus Assembly

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Paramyxovirus assembly at the cell membrane requires the movement of viral components to budding sites and envelopment of nucleocapsids by cellular membranes containing viral glycoproteins, facilitated by interactions with the matrix protein. The specific protein interactions during assembly of respiratory syncytial virus (RSV) are unknown. Here, the postulated interaction between the RSV matrix protein (M) and G glycoprotein (G) was investigated. Partial co-localization of M with G was demonstrated, but not with a truncated variant lacking the cytoplasmic domain and one-third of the transmembrane domain, in cells infected with recombinant RSV or transfected to express G and M. A series of G mutants was constructed with progressively truncated or modified cytoplasmic domains. Data from co-expression in cells and a cell-free binding assay showed that the N-terminal aa 2-6 of G play a key role in G-M interaction, with serine at position 2 and aspartate at position 6 playing key roles.

          Related collections

          Author and article information

          Comments

          Comment on this article