56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Microbial community analysis of a biogas-producing completely stirred tank reactor fed continuously with fodder beet silage as mono-substrate.

      Systematic and applied microbiology
      Archaea, classification, isolation & purification, metabolism, Bacteria, Beta vulgaris, Biodiversity, Bioreactors, Cloning, Molecular, DNA Fingerprinting, methods, DNA, Archaeal, chemistry, genetics, DNA, Bacterial, DNA, Ribosomal, Methane, biosynthesis, Molecular Sequence Data, Polymerase Chain Reaction, RNA, Ribosomal, 16S, Sequence Analysis, DNA, Silage

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The bioconversion of renewable raw material to biogas by anaerobic microbial fermentation processes in completely stirred tank reactors (CSTR) is a valuable alternative resource of energy especially for rural areas. However, knowledge about the microorganisms involved in the degradation of plant biomass is still poor. In this study, a first analysis of the biogas-forming process within a CSTR fed continuously with fodder beet silage as mono-substrate is presented in the context of molecular data on the microbial community composition. As indicated by the conventional process parameters like pH value, content of volatile fatty acids, N:P ratio and the biogas yield, the biogas-forming process within the CSTR occurred with a stable and efficient performance. The average biogas yield based on volatile solids was 0.87m(3)kg(-1) at an organic loading rate of 1.2-2.3kgm(-3)d(-1). This amounts to 94% of the theoretical maximum. In order to identify microorganisms within the CSTR, a 16S rDNA clone library was constructed by PCR amplification applying a prokaryote-specific primer set. One hundred and forty seven clones were obtained and subsequently characterized by amplified rDNA restriction analysis (ARDRA). The sequences of 60 unique ARDRA patterns were estimated in a length of approximately 800-900bp each. Four of them were assigned to the domain Archaea and 56 to the domain Bacteria. Within the domain Archaea, all clones showed a close relationship to methanogenic species. Major bacterial groups represented in the clone library were the class Clostridia of the phylum Firmicutes (22% of all 16S rDNA clones), the class Deltaproteobacteria of the phylum Proteobacteria (24%), the class Bacilli of the phylum Firmicutes (22%) and members of the phylum Bacteroidetes (21%). Within these major groups, the highest biodiversity was found within the class Clostridia (35% of all operational taxonomic units). Members of the phyla Actinobacteria and Spirochaetes were represented only by 5 and 2 clonal sequences, respectively.

          Related collections

          Author and article information

          Comments

          Comment on this article