6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In vitro antifungal activity of bioactive peptides produced by Lactobacillus plantarum against Aspergillus parasiticus and Penicillium expansum

      , , , ,
      LWT - Food Science and Technology
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Antimicrobial peptides of multicellular organisms.

          Multicellular organisms live, by and large, harmoniously with microbes. The cornea of the eye of an animal is almost always free of signs of infection. The insect flourishes without lymphocytes or antibodies. A plant seed germinates successfully in the midst of soil microbes. How is this accomplished? Both animals and plants possess potent, broad-spectrum antimicrobial peptides, which they use to fend off a wide range of microbes, including bacteria, fungi, viruses and protozoa. What sorts of molecules are they? How are they employed by animals in their defence? As our need for new antibiotics becomes more pressing, could we design anti-infective drugs based on the design principles these molecules teach us?
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bacteriocin-based strategies for food biopreservation.

            Bacteriocins are ribosomally-synthesized peptides or proteins with antimicrobial activity, produced by different groups of bacteria. Many lactic acid bacteria (LAB) produce bacteriocins with rather broad spectra of inhibition. Several LAB bacteriocins offer potential applications in food preservation, and the use of bacteriocins in the food industry can help to reduce the addition of chemical preservatives as well as the intensity of heat treatments, resulting in foods which are more naturally preserved and richer in organoleptic and nutritional properties. This can be an alternative to satisfy the increasing consumers demands for safe, fresh-tasting, ready-to-eat, minimally-processed foods and also to develop "novel" food products (e.g. less acidic, or with a lower salt content). In addition to the available commercial preparations of nisin and pediocin PA-1/AcH, other bacteriocins (like for example lacticin 3147, enterocin AS-48 or variacin) also offer promising perspectives. Broad-spectrum bacteriocins present potential wider uses, while narrow-spectrum bacteriocins can be used more specifically to selectively inhibit certain high-risk bacteria in foods like Listeria monocytogenes without affecting harmless microbiota. Bacteriocins can be added to foods in the form of concentrated preparations as food preservatives, shelf-life extenders, additives or ingredients, or they can be produced in situ by bacteriocinogenic starters, adjunct or protective cultures. Immobilized bacteriocins can also find application for development of bioactive food packaging. In recent years, application of bacteriocins as part of hurdle technology has gained great attention. Several bacteriocins show additive or synergistic effects when used in combination with other antimicrobial agents, including chemical preservatives, natural phenolic compounds, as well as other antimicrobial proteins. This, as well as the combined use of different bacteriocins may also be an attractive approach to avoid development of resistant strains. The combination of bacteriocins and physical treatments like high pressure processing or pulsed electric fields also offer good opportunities for more effective preservation of foods, providing an additional barrier to more refractile forms like bacterial endospores as well. The effectiveness of bacteriocins is often dictated by environmental factors like pH, temperature, food composition and structure, as well as the food microbiota. Foods must be considered as complex ecosystems in which microbial interactions may have a great influence on the microbial balance and proliferation of beneficial or harmful bacteria. Recent developments in molecular microbial ecology can help to better understand the global effects of bacteriocins in food ecosystems, and the study of bacterial genomes may reveal new sources of bacteriocins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Preservative agents in foods. Mode of action and microbial resistance mechanisms.

              S Brul (1999)
              Preservative agents are required to ensure that manufactured foods remain safe and unspoiled. In this review, we will discuss the mode of action of both chemical and biological (nature-derived) preservatives and the stress response mechanisms induced by these compounds in microorganisms of concern to the food industry. We will discuss the challenges that food manufacturers face with respect to the assurance of food safety and the prevention of spoilage. Following this, chemical preservatives will be discussed, in particular, weak organic acids such as sorbic and benzoic acid which are widely used in preservation. Furthermore. the mechanisms of microbial inactivation with hydrogen peroxide mediated systems and chelators such as citric acid and EDTA and their potential use in preservation will be covered. We will then address the potential of naturally occurring "preservatives". Of the antimicrobial compounds present in nature, first to be discussed will be the nonproteinaceous compounds often present in herbs and spices and we will speculate on the stress response(s) that microorganisms may elicit to these natural compounds. Next to be addressed will be compounds that attack cell walls and membranes, for example, peptides, proteins and lytic enzymes. In discussing the resistance mechanisms against membrane and wall perturbation, the extensive knowledge of stress responses against osmotic stress and temperature stress will be refered to. Finally, in the concluding paragraphs, options for combination preservation systems are evaluated.
                Bookmark

                Author and article information

                Journal
                LWT - Food Science and Technology
                LWT - Food Science and Technology
                Elsevier BV
                00236438
                August 2017
                August 2017
                : 81
                : 128-135
                Article
                10.1016/j.lwt.2017.03.053
                868a190f-4452-4044-8bdc-b9d16b4a593c
                © 2017

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article