3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Visual Depictions of Our Evolutionary Past: A Broad Case Study Concerning the Need for Quantitative Methods of Soft Tissue Reconstruction and Art-Science Collaborations

      , , ,
      Frontiers in Ecology and Evolution
      Frontiers Media SA

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Flip through scientific textbooks illustrating ideas about human evolution or visit any number of museums of natural history and you will notice an abundance of reconstructions attempting to depict the appearance of ancient hominins. Spend some time comparing reconstructions of the same specimen and notice an obvious fact: hominin reconstructions vary in appearance considerably. In this review, we summarize existing methods of reconstruction to analyze this variability. It is argued that variability between hominin reconstructions is likely the result of unreliable reconstruction methods and misinterpretation of available evidence. We also discuss the risk of disseminating erroneous ideas about human evolution through the use of unscientific reconstructions in museums and publications. The role an artist plays is also analyzed and criticized given how the aforementioned reconstructions have become readily accepted to line the halls of even the most trusted institutions. In conclusion, improved reconstruction methods hold promise for the prediction of hominin soft tissues, as well as for disseminating current scientific understandings of human evolution in the future.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          The evolution of human skin coloration.

          Skin color is one of the most conspicuous ways in which humans vary and has been widely used to define human races. Here we present new evidence indicating that variations in skin color are adaptive, and are related to the regulation of ultraviolet (UV) radiation penetration in the integument and its direct and indirect effects on fitness. Using remotely sensed data on UV radiation levels, hypotheses concerning the distribution of the skin colors of indigenous peoples relative to UV levels were tested quantitatively in this study for the first time. The major results of this study are: (1) skin reflectance is strongly correlated with absolute latitude and UV radiation levels. The highest correlation between skin reflectance and UV levels was observed at 545 nm, near the absorption maximum for oxyhemoglobin, suggesting that the main role of melanin pigmentation in humans is regulation of the effects of UV radiation on the contents of cutaneous blood vessels located in the dermis. (2) Predicted skin reflectances deviated little from observed values. (3) In all populations for which skin reflectance data were available for males and females, females were found to be lighter skinned than males. (4) The clinal gradation of skin coloration observed among indigenous peoples is correlated with UV radiation levels and represents a compromise solution to the conflicting physiological requirements of photoprotection and vitamin D synthesis. The earliest members of the hominid lineage probably had a mostly unpigmented or lightly pigmented integument covered with dark black hair, similar to that of the modern chimpanzee. The evolution of a naked, darkly pigmented integument occurred early in the evolution of the genus Homo. A dark epidermis protected sweat glands from UV-induced injury, thus insuring the integrity of somatic thermoregulation. Of greater significance to individual reproductive success was that highly melanized skin protected against UV-induced photolysis of folate (Branda & Eaton, 1978, Science201, 625-626; Jablonski, 1992, Proc. Australas. Soc. Hum. Biol.5, 455-462, 1999, Med. Hypotheses52, 581-582), a metabolite essential for normal development of the embryonic neural tube (Bower & Stanley, 1989, The Medical Journal of Australia150, 613-619; Medical Research Council Vitamin Research Group, 1991, The Lancet338, 31-37) and spermatogenesis (Cosentino et al., 1990, Proc. Natn. Acad. Sci. U.S.A.87, 1431-1435; Mathur et al., 1977, Fertility Sterility28, 1356-1360).As hominids migrated outside of the tropics, varying degrees of depigmentation evolved in order to permit UVB-induced synthesis of previtamin D(3). The lighter color of female skin may be required to permit synthesis of the relatively higher amounts of vitamin D(3)necessary during pregnancy and lactation. Skin coloration in humans is adaptive and labile. Skin pigmentation levels have changed more than once in human evolution. Because of this, skin coloration is of no value in determining phylogenetic relationships among modern human groups. Copyright 2000 Academic Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia.

            Currently, it is widely accepted that only one hominin genus, Homo, was present in Pleistocene Asia, represented by two species, Homo erectus and Homo sapiens. Both species are characterized by greater brain size, increased body height and smaller teeth relative to Pliocene Australopithecus in Africa. Here we report the discovery, from the Late Pleistocene of Flores, Indonesia, of an adult hominin with stature and endocranial volume approximating 1 m and 380 cm3, respectively--equal to the smallest-known australopithecines. The combination of primitive and derived features assigns this hominin to a new species, Homo floresiensis. The most likely explanation for its existence on Flores is long-term isolation, with subsequent endemic dwarfing, of an ancestral H. erectus population. Importantly, H. floresiensis shows that the genus Homo is morphologically more varied and flexible in its adaptive responses than previously thought.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Analysis of one million base pairs of Neanderthal DNA.

              Neanderthals are the extinct hominid group most closely related to contemporary humans, so their genome offers a unique opportunity to identify genetic changes specific to anatomically fully modern humans. We have identified a 38,000-year-old Neanderthal fossil that is exceptionally free of contamination from modern human DNA. Direct high-throughput sequencing of a DNA extract from this fossil has thus far yielded over one million base pairs of hominoid nuclear DNA sequences. Comparison with the human and chimpanzee genomes reveals that modern human and Neanderthal DNA sequences diverged on average about 500,000 years ago. Existing technology and fossil resources are now sufficient to initiate a Neanderthal genome-sequencing effort.
                Bookmark

                Author and article information

                Journal
                Frontiers in Ecology and Evolution
                Front. Ecol. Evol.
                Frontiers Media SA
                2296-701X
                February 26 2021
                February 26 2021
                : 9
                Article
                10.3389/fevo.2021.639048
                8682badd-8098-45b1-9f81-a8b2a6c7764a
                © 2021

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article