1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Non-Linear Magnetic Field Calibration Method for Filter-Based Magnetographs by Multilayer Perceptron

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          For filter-based magnetographs, the linear calibration method under the weak-field assumption is usually adopted; this leads to magnetic saturation effect in the regions with strong magnetic field. This article explores a new method to overcome the above disadvantage using a multilayer perceptron network, which we call MagMLP, based on a back-propagation algorithm with one input layer, five hidden layers, and one output layer. We use the data from the \textit{Spectropolarimeter} (SP) on board \textit{Hinode} to simulate single-wavelength observations for the model training, and take into account the influence of the Doppler velocity field and the filling factor. The training results show that the linear fitting coefficient (LFC) of the transverse field reaches above 0.91, and that of the longitudinal field is above 0.98. The generalization of the models is good because the corresponding LFCs are above 0.9 for the test subsets. Compared with the linear calibration method, the MagMLP is much more effective on dealing with the magnetic saturation effect. Analyzing an active region, the results of the linear calibration present an evident magnetic saturation effect in the umbra regions; the corresponding systematic error reaches values greater than 1000 G in most areas, or even exceeds 2000 G at some pixels. However, the results of MagMLP at these locations are very close to the inversion results, and the systematic errors are basically within 300 G. In addition, we find that there are many "bright spots" and "dark spots" on the inclination angle images from the inversion results of \textit{Hinode}/SP with values of 180 and 0 degrees, respectively, where the inversion is not reliable and does not produce a good result; the MagMLP handles these points well.

          Related collections

          Author and article information

          Journal
          06 February 2020
          Article
          10.1007/s11207-019-1573-9
          2002.02249
          864b4c81-40da-4314-b953-b5d344e44811

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          Sol.Phys. 295 (2020) 5
          19 pages, 12 figures, 2 tables, accepted for publication in Solar Physics
          astro-ph.IM astro-ph.SR

          Instrumentation & Methods for astrophysics,Solar & Stellar astrophysics

          Comments

          Comment on this article