58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          HIV-1 replication can be efficiently inhibited by intracellular expression of an siRNA targeting the viral RNA. However, HIV-1 escape variants emerged after prolonged culturing. These RNAi-resistant viruses contain nucleotide substitutions or deletions in or near the targeted sequence. We observed an inverse correlation between the level of resistance and the stability of the siRNA/target-RNA duplex. However, two escape variants showed a higher level of resistance than expected based on the duplex stability. We demonstrate that these mutations induce alternative folding of the RNA such that the target sequence is occluded from binding to the siRNA, resulting in reduced RNAi efficiency. HIV-1 can thus escape from RNAi-mediated inhibition not only through nucleotide substitutions or deletions in the siRNA target sequence, but also through mutations that alter the local RNA secondary structure. The results highlight the enormous genetic flexibility of HIV-1 and provide detailed molecular insight into the sequence specificity of RNAi and the impact of target RNA secondary structure.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          RNA interference is mediated by 21- and 22-nucleotide RNAs.

          Double-stranded RNA (dsRNA) induces sequence-specific posttranscriptional gene silencing in many organisms by a process known as RNA interference (RNAi). Using a Drosophila in vitro system, we demonstrate that 21- and 22-nt RNA fragments are the sequence-specific mediators of RNAi. The short interfering RNAs (siRNAs) are generated by an RNase III-like processing reaction from long dsRNA. Chemically synthesized siRNA duplexes with overhanging 3' ends mediate efficient target RNA cleavage in the lysate, and the cleavage site is located near the center of the region spanned by the guiding siRNA. Furthermore, we provide evidence that the direction of dsRNA processing determines whether sense or antisense target RNA can be cleaved by the siRNA-protein complex.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients.

            A blood donor infected with human immunodeficiency virus-type 1 (HIV-1) and a cohort of six blood or blood product recipients infected from this donor remain free of HIV-1-related disease with stable and normal CD4 lymphocyte counts 10 to 14 years after infection. HIV-1 sequences from either virus isolates or patient peripheral blood mononuclear cells had similar deletions in the nef gene and in the region of overlap of nef and the U3 region of the long terminal repeat (LTR). Full-length sequencing of one isolate genome and amplification of selected HIV-1 genome regions from other cohort members revealed no other abnormalities of obvious functional significance. These data show that survival after HIV infection can be determined by the HIV genome and support the importance of nef or the U3 region of the LTR in determining the pathogenicity of HIV-1.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Single-stranded antisense siRNAs guide target RNA cleavage in RNAi.

              Small interfering RNAs (siRNAs) are the mediators of mRNA degradation in the process of RNA interference (RNAi). Here, we describe a human biochemical system that recapitulates siRNA-mediated target RNA degradation. By using affinity-tagged siRNAs, we demonstrate that a single-stranded siRNA resides in the RNA-induced silencing complex (RISC) together with eIF2C1 and/or eIF2C2 (human GERp95) Argonaute proteins. RISC is rapidly formed in HeLa cell cytoplasmic extract supplemented with 21 nt siRNA duplexes, but also by adding single-stranded antisense RNAs, which range in size between 19 and 29 nucleotides. Single-stranded antisense siRNAs are also effectively silencing genes in HeLa cells, especially when 5'-phosphorylated, and expand the repertoire of RNA reagents suitable for gene targeting.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Research
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                2005
                2005
                01 February 2005
                : 33
                : 2
                : 796-804
                Affiliations
                Department of Human Retrovirology, Academic Medical Center, University of Amsterdam Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
                Author notes
                *To whom correspondence should be addressed. Tel: +31 20 566 4822; Fax: +31 20 691 6531; Email: b.berkhout@ 123456amc.uva.nl
                Article
                10.1093/nar/gki220
                548362
                15687388
                863be8b9-1a6f-407f-a6d0-4649e7c94d54
                © The Author 2005. Published by Oxford University Press. All rights reserved

                The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@ 123456oupjournals.org

                History
                : 10 December 2004
                : 13 January 2005
                : 13 January 2005
                Categories
                Article

                Genetics
                Genetics

                Comments

                Comment on this article