35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The rde-1 Gene, RNA Interference, and Transposon Silencing in C. elegans

      , , , , , , ,
      Cell
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Double-stranded (ds) RNA can induce sequence-specific inhibition of gene function in several organisms. However, both the mechanism and the physiological role of the interference process remain mysterious. In order to study the interference process, we have selected C. elegans mutants resistant to dsRNA-mediated interference (RNAi). Two loci, rde-1 and rde-4, are defined by mutants strongly resistant to RNAi but with no obvious defects in growth or development. We show that rde-1 is a member of the piwi/sting/argonaute/zwille/eIF2C gene family conserved from plants to vertebrates. Interestingly, several, but not all, RNAi-deficient strains exhibit mobilization of the endogenous transposons. We discuss implications for the mechanism of RNAi and the possibility that one natural function of RNAi is transposon silencing.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          Specific interference by ingested dsRNA.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal.

            Germ-line stem cells (GSCs) serve as the source for gametogenesis in diverse organisms. We cloned and characterized the Drosophila piwi gene and showed that it is required for the asymmetric division of GSCs to produce and maintain a daughter GSC but is not essential for the further differentiation of the committed daughter cell. Genetic mosaic and RNA in situ analyses suggest that piwi expression in adjacent somatic cells regulates GSC division. piwi encodes a highly basic novel protein, well conserved during evolution. We isolated piwi homologs in Caenorhabditis elegans and humans and also identified Arabidopsis piwi-like genes known to be required for meristem cell maintenance. Decreasing C. elegans piwi expression reduces the proliferation of GSC-equivalent cells. Thus, piwi represents a novel class of genes required for GSC division in diverse organisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of genes required for cytoplasmic localization in early C. elegans embryos.

              We have isolated and analyzed eight strict maternal effect mutations identifying four genes, par-1, par-2, par-3, and par-4, required for cytoplasmic localization in early embryos of the nematode C. elegans. Mutations in these genes lead to defects in cleavage patterns, timing of cleavages, and localization of germ line-specific P granules. Four mutations in par-1 and par-4 are fully expressed maternal effect lethal mutations; all embryos from mothers homozygous for these mutations arrest as amorphous masses of differentiated cells but are specifically lacking intestinal cells. Four mutations in par-2, par-3, and par-4 are incompletely expressed maternal effect lethal mutations and are also grandchildless; some embryos from homozygous mothers survive and grow to become infertile adults due to absence of functional germ cells. We propose that all of these defects result from the failure of a maternally encoded system for intracellular localization in early embryos.
                Bookmark

                Author and article information

                Journal
                Cell
                Cell
                Elsevier BV
                00928674
                October 1999
                October 1999
                : 99
                : 2
                : 123-132
                Article
                10.1016/S0092-8674(00)81644-X
                10535731
                cf5b4c29-c8be-41b6-bac8-3fae6068d9d8
                © 1999

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article