16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Early Detection of Diabetic Peripheral Neuropathy: A Focus on Small Nerve Fibres

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diabetic peripheral neuropathy (DPN) is the most common complication of both type 1 and 2 diabetes. As a result, neuropathic pain, diabetic foot ulcers and lower-limb amputations impact drastically on quality of life, contributing to the individual, societal, financial and healthcare burden of diabetes. DPN is diagnosed at a late, often pre-ulcerative stage due to a lack of early systematic screening and the endorsement of monofilament testing which identifies advanced neuropathy only. Compared to the success of the diabetic eye and kidney screening programmes there is clearly an unmet need for an objective reliable biomarker for the detection of early DPN. This article critically appraises research and clinical methods for the diagnosis or screening of early DPN. In brief, functional measures are subjective and are difficult to implement due to technical complexity. Moreover, skin biopsy is invasive, expensive and lacks diagnostic laboratory capacity. Indeed, point-of-care nerve conduction tests are convenient and easy to implement however questions are raised regarding their suitability for use in screening due to the lack of small nerve fibre evaluation. Corneal confocal microscopy (CCM) is a rapid, non-invasive, and reproducible technique to quantify small nerve fibre damage and repair which can be conducted alongside retinopathy screening. CCM identifies early sub-clinical DPN, predicts the development and allows staging of DPN severity. Automated quantification of CCM with AI has enabled enhanced unbiased quantification of small nerve fibres and potentially early diagnosis of DPN. Improved screening tools will prevent and reduce the burden of foot ulceration and amputations with the primary aim of reducing the prevalence of this common microvascular complication.

          Related collections

          Most cited references298

          • Record: found
          • Abstract: found
          • Article: not found

          IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045

          Since the year 2000, IDF has been measuring the prevalence of diabetes nationally, regionally and globally.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus

            Long-term microvascular and neurologic complications cause major morbidity and mortality in patients with insulin-dependent diabetes mellitus (IDDM). We examined whether intensive treatment with the goal of maintaining blood glucose concentrations close to the normal range could decrease the frequency and severity of these complications. A total of 1441 patients with IDDM--726 with no retinopathy at base line (the primary-prevention cohort) and 715 with mild retinopathy (the secondary-intervention cohort) were randomly assigned to intensive therapy administered either with an external insulin pump or by three or more daily insulin injections and guided by frequent blood glucose monitoring or to conventional therapy with one or two daily insulin injections. The patients were followed for a mean of 6.5 years, and the appearance and progression of retinopathy and other complications were assessed regularly. In the primary-prevention cohort, intensive therapy reduced the adjusted mean risk for the development of retinopathy by 76 percent (95 percent confidence interval, 62 to 85 percent), as compared with conventional therapy. In the secondary-intervention cohort, intensive therapy slowed the progression of retinopathy by 54 percent (95 percent confidence interval, 39 to 66 percent) and reduced the development of proliferative or severe nonproliferative retinopathy by 47 percent (95 percent confidence interval, 14 to 67 percent). In the two cohorts combined, intensive therapy reduced the occurrence of microalbuminuria (urinary albumin excretion of > or = 40 mg per 24 hours) by 39 percent (95 percent confidence interval, 21 to 52 percent), that of albuminuria (urinary albumin excretion of > or = 300 mg per 24 hours) by 54 percent (95 percent confidence interval 19 to 74 percent), and that of clinical neuropathy by 60 percent (95 percent confidence interval, 38 to 74 percent). The chief adverse event associated with intensive therapy was a two-to-threefold increase in severe hypoglycemia. Intensive therapy effectively delays the onset and slows the progression of diabetic retinopathy, nephropathy, and neuropathy in patients with IDDM.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-years for 32 Cancer Groups, 1990 to 2015

              IMPORTANCE Cancer is the second leading cause of death worldwide. Current estimates on the burden of cancer are needed for cancer control planning. OBJECTIVE To estimate mortality, incidence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs) for 32 cancers in 195 countries and territories from 1990 to 2015. EVIDENCE REVIEW Cancer mortality was estimated using vital registration system data, cancer registry incidence data (transformed to mortality estimates using separately estimated mortality to incidence [MI] ratios), and verbal autopsy data. Cancer incidence was calculated by dividing mortality estimates through the modeled MI ratios. To calculate cancer prevalence, MI ratios were used to model survival. To calculate YLDs, prevalence estimates were multiplied by disability weights. The YLLs were estimated by multiplying age-specific cancer deaths by the reference life expectancy. DALYs were estimated as the sum of YLDs and YLLs. A sociodemographic index (SDI) was created for each location based on income per capita, educational attainment, and fertility. Countries were categorized by SDI quintiles to summarize results. FINDINGS In 2015, there were 17.5 million cancer cases worldwide and 8.7 million deaths. Between 2005 and 2015, cancer cases increased by 33%, with population aging contributing 16%, population growth 13%, and changes in age-specific rates contributing 4%. For men, the most common cancer globally was prostate cancer (1.6 million cases). Tracheal, bronchus, and lung cancer was the leading cause of cancer deaths and DALYs in men (1.2 million deaths and 25.9 million DALYs). For women, the most common cancer was breast cancer (2.4 million cases). Breast cancer was also the leading cause of cancer deaths and DALYs for women (523 000 deaths and 15.1 million DALYs). Overall, cancer caused 208.3 million DALYs worldwide in 2015 for both sexes combined. Between 2005 and 2015, age-standardized incidence rates for all cancers combined increased in 174 of 195 countries or territories. Age-standardized death rates (ASDRs) for all cancers combined decreased within that timeframe in 140 of 195 countries or territories. Countries with an increase in the ASDR due to all cancers were largely located on the African continent. Of all cancers, deaths between 2005 and 2015 decreased significantly for Hodgkin lymphoma (−6.1% [95% uncertainty interval (UI), −10.6% to −1.3%]). The number of deaths also decreased for esophageal cancer, stomach cancer, and chronic myeloid leukemia, although these results were not statistically significant. CONCLUSION AND RELEVANCE As part of the epidemiological transition, cancer incidence is expected to increase in the future, further straining limited health care resources. Appropriate allocation of resources for cancer prevention, early diagnosis, and curative and palliative care requires detailed knowledge of the local burden of cancer. The GBD 2015 study results demonstrate that progress is possible in the war against cancer. However, the major findings also highlight an unmet need for cancer prevention efforts, including tobacco control, vaccination, and the promotion of physical activity and a healthy diet.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Diagnostics (Basel)
                Diagnostics (Basel)
                diagnostics
                Diagnostics
                MDPI
                2075-4418
                24 January 2021
                February 2021
                : 11
                : 2
                : 165
                Affiliations
                [1 ]Diabetes & Endocrinology Research, Institute of Cardiovascular and Metabolic Medicine and The Pain Research Institute, University of Liverpool, Liverpool L69 7ZX, UK; hirkhal2@ 123456liverpool.ac.uk (R.S.K.); Dan.Cuthbertson@ 123456liverpool.ac.uk (D.J.C.)
                [2 ]The Walton Centre, Department of Pain Medicine, Liverpool L9 7LJ, UK; Bernhard.Frank@ 123456thewaltoncentre.nhs.uk
                [3 ]Department of Musculoskeletal & Ageing Science, Faculty of Health & Life Sciences, Institute of Life Course & Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; Andrew.Marshall@ 123456liverpool.ac.uk
                [4 ]Faculty of Health and Life Sciences, The Pain Research Institute, University of Liverpool, Liverpool L9 7AL, UK
                [5 ]The Walton Centre, Department of Clinical Neurophysiology, Liverpool L9 7LJ, UK
                [6 ]Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha P.O. Box 24144, Qatar; g.ponirakis@ 123456gmail.com (G.P.); inp2002@ 123456qatar-med.cornell.edu (I.N.P.); ram2045@ 123456qatar-med.cornell.edu (R.A.M.)
                [7 ]Institute of Cardiovascular Sciences, University of Manchester, Manchester M13 9PL, UK
                [8 ]Division of Endocrinology, Diabetes and Gastroenterology, University of Manchester, Manchester M13 9PT, UK
                Author notes
                [* ]Correspondence: jamie.burgess@ 123456liverpool.ac.uk (J.B.); uazman.alam@ 123456liverpool.ac.uk or Uazman.alam@ 123456manchester.ac.uk (U.A.); Tel.: +44-0151-529-5936 (J.B.); +44-0151-529-5920 (U.A.)
                Author information
                https://orcid.org/0000-0002-7165-6918
                https://orcid.org/0000-0002-6936-1248
                https://orcid.org/0000-0002-6128-0822
                https://orcid.org/0000-0002-7188-8903
                Article
                diagnostics-11-00165
                10.3390/diagnostics11020165
                7911433
                33498918
                8620e0c8-0b87-425f-87b4-baac960b48c1
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 November 2020
                : 20 January 2021
                Categories
                Review

                diabetes,neuropathy,peripheral neuropathy,distal sensory polyneuropathy,diabetic neuropathy,diabetic peripheral neuropathy,early detection,screening,diagnostics,point-of-care

                Comments

                Comment on this article