85
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Global Genome and Transcriptome Analyses of Magnaporthe oryzae Epidemic Isolate 98-06 Uncover Novel Effectors and Pathogenicity-Related Genes, Revealing Gene Gain and Lose Dynamics in Genome Evolution

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genome dynamics of pathogenic organisms are driven by pathogen and host co-evolution, in which pathogen genomes are shaped to overcome stresses imposed by hosts with various genetic backgrounds through generation of a variety of isolates. This same principle applies to the rice blast pathogen Magnaporthe oryzae and the rice host; however, genetic variations among different isolates of M. oryzae remain largely unknown, particularly at genome and transcriptome levels. Here, we applied genomic and transcriptomic analytical tools to investigate M. oryzae isolate 98-06 that is the most aggressive in infection of susceptible rice cultivars. A unique 1.4 Mb of genomic sequences was found in isolate 98-06 in comparison to reference strain 70-15. Genome-wide expression profiling revealed the presence of two critical expression patterns of M. oryzae based on 64 known pathogenicity-related (PaR) genes. In addition, 134 candidate effectors with various segregation patterns were identified. Five tested proteins could suppress BAX-mediated programmed cell death in Nicotiana benthamiana leaves. Characterization of isolate-specific effector candidates Iug6 and Iug9 and PaR candidate Iug18 revealed that they have a role in fungal propagation and pathogenicity. Moreover, Iug6 and Iug9 are located exclusively in the biotrophic interfacial complex (BIC) and their overexpression leads to suppression of defense-related gene expression in rice, suggesting that they might participate in biotrophy by inhibiting the SA and ET pathways within the host. Thus, our studies identify novel effector and PaR proteins involved in pathogenicity of the highly aggressive M. oryzae field isolate 98-06, and reveal molecular and genomic dynamics in the evolution of M. oryzae and rice host interactions.

          Author Summary

          Genetic variations in pathogens, such as the causal agent of rice blast Magnaporthe oryzae, often lead to circumvention of disease-resistance cultivars. Previous genome-wide analyses of model organisms suggest that pathogen effectors are also rapidly evolving, especially in regions with high genome plasticity. However, genetic variations among different isolates remain largely unknown in M. oryzae, particularly at the genome and transcriptome levels. In this study, we provided a systematic genomic and interaction transcriptome profile for a dominant rice blast field isolate, resulting in identification of 134 candidate effectors. Two effectors, Iug6 and Iug9, and one pathogenicity-related (PaR) gene product, Iug18, were subjected to functional characterization. We found that Iug6 and Iug9 are located in the biotrophic interfacial complex (BIC) and their overexpression leads to suppression of defense-related gene expression in rice, while Iug18 appears to be a novel PaR protein. Our studies support the hypothesis that isolate-unique genes may serve as a source of genetic variability in the M. oryzae population encountering different environments. Our studies also facilitate further understanding of effectors and genomic variations in pathogenicity of M. oryzae.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathogen population genetics, evolutionary potential, and durable resistance.

            We hypothesize that the evolutionary potential of a pathogen population is reflected in its population genetic structure. Pathogen populations with a high evolutionary potential are more likely to overcome genetic resistance than pathogen populations with a low evolutionary potential. We propose a flexible framework to predict the evolutionary potential of pathogen populations based on analysis of their genetic structure. According to this framework, pathogens that pose the greatest risk of breaking down resistance genes have a mixed reproduction system, a high potential for genotype flow, large effective population sizes, and high mutation rates. The lowest risk pathogens are those with strict asexual reproduction, low potential for gene flow, small effective population sizes, and low mutation rates. We present examples of high-risk and low-risk pathogens. We propose general guidelines for a rational approach to breed durable resistance according to the evolutionary potential of the pathogen.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure.

              An improved lithium acetate (LiAc)/single-stranded DNA (SS-DNA)/polyethylene glycol (PEG) protocol which yields > 1 x 10(6) transformants/micrograms plasmid DNA and the original protocol described by Schiestl and Gietz (1989) were used to investigate aspects of the mechanism of LiAc/SS-DNA/PEG transformation. The highest transformation efficiency was observed when 1 x 10(8) cells were transformed with 100 ng plasmid DNA in the presence of 50 micrograms SS carrier DNA. The yield of transformants increased linearly up to 5 micrograms plasmid per transformation. A 20-min heat shock at 42 degrees C was necessary for maximal yields. PEG was found to deposit both carrier DNA and plasmid DNA onto cells. SS carrier DNA bound more effectively to the cells and caused tighter binding of 32P-labelled plasmid DNA than did double-stranded (DS) carrier. The LiAc/SS-DNA/PEG transformation method did not result in cell fusion. DS carrier DNA competed with DS vector DNA in the transformation reaction. SS plasmid DNA transformed cells poorly in combination with both SS and DS carrier DNA. The LiAc/SS-DNA/PEG method was shown to be more effective than other treatments known to make cells transformable. A model for the mechanism of transformation by the LiAc/SS-DNA/PEG method is discussed.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                2 April 2015
                April 2015
                : 11
                : 4
                : e1004801
                Affiliations
                [1 ]Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
                [2 ]Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
                [3 ]BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China
                [4 ]Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
                Texas A&M University, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ZZ PW XZha YD YW. Performed the experiments: YD YL MZ XG ML XL XZhe YC. Analyzed the data: YD WY YoL YaL MJ. Wrote the paper: YD ZZ PW HZ.

                Article
                PPATHOGENS-D-14-02491
                10.1371/journal.ppat.1004801
                4383609
                25837042
                85fcb8bf-ee39-4daf-96e0-1a6ef0d38cb6
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 15 October 2014
                : 11 March 2015
                Page count
                Figures: 10, Tables: 1, Pages: 30
                Funding
                This research was supported by the National Science Foundation for Distinguished Young Scholars of China (Grant No.31325022 to ZZ), National Basic Research Program of China (Grant No: 2012CB114000, ZZ), Natural Science Foundation of China (Grant No: 31271998, ZZ), and the especially appointed professorship (Jiangsu, China). The funders had no role in study design, data collection, and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                The genome sequence data of 98-06 was deposited at the NCBI Genome Database ( http://www.ncbi.nlm.nih.gov/assembly) under the accession number JRBC00000000. RNA-Seq reads were deposited at the GenBank SRA database under sample number SRS692257 and experiment number SRX689727. The GenBank accession numbers for IUG6, IUG9, and IUG18 are KM522919, KM522920, and KM522921, respectively. The information of other genes with their reference gene ID in 70-15 and gene location in the 98-06 genome is provided in S9 Table.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article