56
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Connecting materials sciences with fungal biology: a sea of possibilities

      editorial
      Fungal Biology and Biotechnology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Special Issue “Connecting materials science with fungal biology” celebrates recent breakthroughs in the fabrication of fungal-based materials, all of which have been made possible by the interdisciplinary and transdisciplinary collaboration of fungal biologists and biotechnologists with artists, designers, materials scientists, and architects. It features conceptual considerations and latest developments of these joint research efforts and the paradigm shift that is involved. The aim of this collection of twelve papers is to highlight the infinite possibilities for the development of innovative fungal-based materials which can be realized through integrating the knowledge and methods from different disciplines.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Growing a circular economy with fungal biotechnology: a white paper

          Fungi have the ability to transform organic materials into a rich and diverse set of useful products and provide distinct opportunities for tackling the urgent challenges before all humans. Fungal biotechnology can advance the transition from our petroleum-based economy into a bio-based circular economy and has the ability to sustainably produce resilient sources of food, feed, chemicals, fuels, textiles, and materials for construction, automotive and transportation industries, for furniture and beyond. Fungal biotechnology offers solutions for securing, stabilizing and enhancing the food supply for a growing human population, while simultaneously lowering greenhouse gas emissions. Fungal biotechnology has, thus, the potential to make a significant contribution to climate change mitigation and meeting the United Nation’s sustainable development goals through the rational improvement of new and established fungal cell factories. The White Paper presented here is the result of the 2nd Think Tank meeting held by the EUROFUNG consortium in Berlin in October 2019. This paper highlights discussions on current opportunities and research challenges in fungal biotechnology and aims to inform scientists, educators, the general public, industrial stakeholders and policymakers about the current fungal biotech revolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Current state and future prospects of pure mycelium materials

            In the context of the ongoing transition from a linear to a circular economy, ecologically friendly renewable solutions are put in place. Filamentous fungi can be grown on various organic feedstocks and functionalized into a range of diverse material types which are biobased and thus more sustainable in terms of their production, use and recycling. Pure mycelium materials, consisting only of mycelial biomass, can adopt versatile properties and appear promising as a substitute for current petrochemically produced polymeric materials or, in the case of myco-leather, as a substitute for animal-based leather. In recent years, a handful of private companies have been innovating to bring products based on pure mycelium materials to the market while scientific interest in these promising biomaterials is now starting to gain momentum. In this primer, we introduce pure mycelium materials, frame different production methods, review existing and potential future applications, thereby offering a vision on future advances for this emerging fungi-based technology. Supplementary Information The online version contains supplementary material available at 10.1186/s40694-021-00128-1.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A review on architecture with fungal biomaterials: the desired and the feasible

              Fungal biomaterials are becoming increasingly popular in the fields of architecture and design, with a significant bloom of projects having taken place during the last 10 years. Using mycelium as a stabilizing compound for fibers from agricultural waste, new building elements can be manufactured according to the circular economy model and be used for architectural construction to transform the building industry towards an increased environmental and economic sustainability. Simultaneously, research on those materials and especially fungal biocomposites is producing knowledge that allows for the materials themselves to inspire and transform the architectural design. Novel research on those materials is not only allowing for their use as construction materials, but it inspires and affects the architectural design process through the discovery and variation of the materials’ properties. Today, many interdisciplinary teams are working on this emerging field to integrate fungal biocomposites in the construction industry and to merge science, art, and architecture responsibly. This study provides an overview of the progress that has been made in this field during the last 10 years, focusing on six works that are presented in more detail. Those six works are spaces at an architectural scale which showcase unique elements and innovative aspects for the use of fungal biomaterials in architecture. Each work has followed different design strategies, different fabrication methods, or different post-processing methods. All of them together have produced significant technical knowledge as well as a cultural impact for the field of architecture but also for the field of fungal biotechnology.
                Bookmark

                Author and article information

                Contributors
                vera.meyer@tu-berlin.de
                Journal
                Fungal Biol Biotechnol
                Fungal Biol Biotechnol
                Fungal Biology and Biotechnology
                BioMed Central (London )
                2054-3085
                1 March 2022
                1 March 2022
                2022
                : 9
                : 5
                Affiliations
                GRID grid.6734.6, ISNI 0000 0001 2292 8254, Chair of Applied and Molecular Microbiology, , Technische Universität Berlin, ; Straße des 17. Juni 135, 10623 Berlin, Germany
                Author information
                http://orcid.org/0000-0002-2298-2258
                Article
                137
                10.1186/s40694-022-00137-8
                8889637
                35232493
                85528469-68e9-4a10-b55f-a946762bfbc1
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 24 February 2022
                : 24 February 2022
                Categories
                Editorial
                Custom metadata
                © The Author(s) 2022

                Comments

                Comment on this article