13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Current state and future prospects of pure mycelium materials

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the context of the ongoing transition from a linear to a circular economy, ecologically friendly renewable solutions are put in place. Filamentous fungi can be grown on various organic feedstocks and functionalized into a range of diverse material types which are biobased and thus more sustainable in terms of their production, use and recycling. Pure mycelium materials, consisting only of mycelial biomass, can adopt versatile properties and appear promising as a substitute for current petrochemically produced polymeric materials or, in the case of myco-leather, as a substitute for animal-based leather. In recent years, a handful of private companies have been innovating to bring products based on pure mycelium materials to the market while scientific interest in these promising biomaterials is now starting to gain momentum. In this primer, we introduce pure mycelium materials, frame different production methods, review existing and potential future applications, thereby offering a vision on future advances for this emerging fungi-based technology.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s40694-021-00128-1.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Genome editing. The new frontier of genome engineering with CRISPR-Cas9.

          The advent of facile genome engineering using the bacterial RNA-guided CRISPR-Cas9 system in animals and plants is transforming biology. We review the history of CRISPR (clustered regularly interspaced palindromic repeat) biology from its initial discovery through the elucidation of the CRISPR-Cas9 enzyme mechanism, which has set the stage for remarkable developments using this technology to modify, regulate, or mark genomic loci in a wide variety of cells and organisms from all three domains of life. These results highlight a new era in which genomic manipulation is no longer a bottleneck to experiments, paving the way toward fundamental discoveries in biology, with applications in all branches of biotechnology, as well as strategies for human therapeutics. Copyright © 2014, American Association for the Advancement of Science.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CRISPR-Cas guides the future of genetic engineering

            The diversity, modularity, and efficacy of CRISPR-Cas systems are driving a biotechnological revolution. RNA-guided Cas enzymes have been adopted as tools to manipulate the genomes of cultured cells, animals, and plants, accelerating the pace of fundamental research and enabling clinical and agricultural breakthroughs. We describe the basic mechanisms that set the CRISPR-Cas toolkit apart from other programmable gene-editing technologies, highlighting the diverse and naturally evolved systems now functionalized as biotechnologies. We discuss the rapidly evolving landscape of CRISPR-Cas applications, from gene editing to transcriptional regulation, imaging, and diagnostics. Continuing functional dissection and an expanding landscape of applications position CRISPR-Cas tools at the cutting edge of nucleic acid manipulation that is rewriting biology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Fungal Cell Wall: Structure, Biosynthesis, and Function.

              The molecular composition of the cell wall is critical for the biology and ecology of each fungal species. Fungal walls are composed of matrix components that are embedded and linked to scaffolds of fibrous load-bearing polysaccharides. Most of the major cell wall components of fungal pathogens are not represented in humans, other mammals, or plants, and therefore the immune systems of animals and plants have evolved to recognize many of the conserved elements of fungal walls. For similar reasons the enzymes that assemble fungal cell wall components are excellent targets for antifungal chemotherapies and fungicides. However, for fungal pathogens, the cell wall is often disguised since key signature molecules for immune recognition are sometimes masked by immunologically inert molecules. Cell wall damage leads to the activation of sophisticated fail-safe mechanisms that shore up and repair walls to avoid catastrophic breaching of the integrity of the surface. The frontiers of research on fungal cell walls are moving from a descriptive phase defining the underlying genes and component parts of fungal walls to more dynamic analyses of how the various components are assembled, cross-linked, and modified in response to environmental signals. This review therefore discusses recent advances in research investigating the composition, synthesis, and regulation of cell walls and how the cell wall is targeted by immune recognition systems and the design of antifungal diagnostics and therapeutics.
                Bookmark

                Author and article information

                Contributors
                Eveline.Peeters@vub.be
                Journal
                Fungal Biol Biotechnol
                Fungal Biol Biotechnol
                Fungal Biology and Biotechnology
                BioMed Central (London )
                2054-3085
                20 December 2021
                20 December 2021
                2021
                : 8
                : 20
                Affiliations
                [1 ]GRID grid.8767.e, ISNI 0000 0001 2290 8069, Research Group of Microbiology, Department of Bioengineering Sciences, , Vrije Universiteit Brussel, ; Pleinlaan 2, B-1050 Brussels, Belgium
                [2 ]GRID grid.8767.e, ISNI 0000 0001 2290 8069, Research Group of Architectural Engineering, Department of Architectural Engineering, , Vrije Universiteit Brussel, ; Pleinlaan 2, B-1050 Brussels, Belgium
                [3 ]GRID grid.1006.7, ISNI 0000 0001 0462 7212, Hub for Biotechnology in the Built Environment, Devonshire Building, , Newcastle University, ; Newcastle upon Tyne, NE1 7RU UK
                Author information
                http://orcid.org/0000-0001-7423-8714
                Article
                128
                10.1186/s40694-021-00128-1
                8691024
                34930476
                096084a0-d7ad-415c-8671-6d29a58968b5
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 14 October 2021
                : 2 December 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100003130, Fonds Wetenschappelijk Onderzoek;
                Award ID: 1SC9220N
                Award ID: 1SA9721N
                Award ID: 1S36417N
                Award Recipient :
                Categories
                Primer
                Custom metadata
                © The Author(s) 2021

                pure mycelium materials,biomaterials,myco-leather,mycelium foam,fungal leather,aerial hyphae

                Comments

                Comment on this article