2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Lipopolysaccharide-induced maternal immune activation modulates microglial CX3CR1 protein expression and morphological phenotype in the hippocampus and dentate gyrus, resulting in cognitive inflexibility during late adolescence.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inflammation during pregnancy can disturb brain development and lead to disorders in the progeny, including autism spectrum disorder and schizophrenia. However, the mechanism by which a prenatal, short-lived increase of cytokines results in adverse neurodevelopmental outcomes remains largely unknown. Microglia-the brain's resident immune-cells-stand as fundamental cellular mediators, being highly sensitive and responsive to immune signals, which also play key roles during normal development. The fractalkine signaling axis is a neuron-microglia communication mechanism used to regulate neurogenesis and network formation. Previously, we showed hippocampal reduction of fractalkine receptor (Cx3cr1) mRNA at postnatal day (P) 15 in male offspring exposed to maternal immune activation induced with lipopolysaccharide (LPS) during late gestation, which was concomitant to an increased dendritic spine density in the dentate gyrus, a neurogenic niche. The current study sought to evaluate the origin and impact of this reduced hippocampal Cx3cr1 mRNA expression on microglia and cognition. We found that microglial total cell number and density are not affected in the dorsal hippocampus and dentate gyrus, respectively, but that the microglial CX3CR1 protein is decreased in the hippocampus of LPS-male offspring at P15. Further characterization of microglial morphology in the dentate gyrus identified a more ameboid phenotype in LPS-exposed offspring, predominantly in males, at P15. We thus explored maternal plasma and fetal brain cytokines to understand the mechanism behind microglial priming, showing a robust immune activation in the mother at 2 and 4 hrs after LPS administration, while only IL-10 tended towards upregulation at 2 hrs after LPS in fetal brains. To evaluate the functional long-term consequences, we assessed learning and cognitive flexibility behavior during late adolescence, finding that LPS affects only the latter with a male predominance on perseveration. A CX3CR1 gene variant in humans that results in disrupted fractalkine signaling has been recently associated with an increased risk for neurodevelopmental disorders. We show that an acute immune insult during late gestation can alter fractalkine signaling by reducing the microglial CX3CR1 protein expression, highlighting neuron-microglial fractalkine signaling as a relevant target underlying the outcomes of environmental risk factors on neurodevelopmental disorders.

          Related collections

          Author and article information

          Journal
          Brain Behav Immun
          Brain, behavior, and immunity
          Elsevier BV
          1090-2139
          0889-1591
          Oct 2021
          : 97
          Affiliations
          [1 ] Department of Neurosciences, University of California, La Jolla, CA, USA; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada. Electronic address: lourdes.fernandezdecossiogomez@mail.mcgill.ca.
          [2 ] Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
          [3 ] Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Axe Neurosciences, Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, Canada.
          [4 ] Department of Biology, École Normale Supérieure de Lyon, Université de Lyon, Lyon, France.
          [5 ] Department of Bioengineering, Stanford University, Stanford, CA, USA.
          [6 ] Axe Neurosciences, Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, Canada; Département de médecine moléculaire, Université Laval, Québec, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Biochemistry and Molecular Biology, Faculty of Medicine, The University of British Colombia, Vancouver, BC, Canada. Electronic address: evetremblay@uvic.ca.
          Article
          S0889-1591(21)00289-0
          10.1016/j.bbi.2021.07.025
          34343619
          852e4906-3e45-4930-a695-cd26fbf650e8
          History

          Hippocampus,Lipopolysaccharide,Fractalkine,Dentate gyrus,Cognitive inflexibility,CX3CR1,Barnes maze,Microglia,Maternal immune activation

          Comments

          Comment on this article