30
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Detailed Overview of Immune Escape, Antibody Escape, Partial Vaccine Escape of SARS-CoV-2 and Their Emerging Variants With Escape Mutations

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The infective SARS-CoV-2 is more prone to immune escape. Presently, the significant variants of SARS-CoV-2 are emerging in due course of time with substantial mutations, having the immune escape property. Simultaneously, the vaccination drive against this virus is in progress worldwide. However, vaccine evasion has been noted by some of the newly emerging variants. Our review provides an overview of the emerging variants’ immune escape and vaccine escape ability. We have illustrated a broad view related to viral evolution, variants, and immune escape ability. Subsequently, different immune escape approaches of SARS-CoV-2 have been discussed. Different innate immune escape strategies adopted by the SARS-CoV-2 has been discussed like, IFN-I production dysregulation, cytokines related immune escape, immune escape associated with dendritic cell function and macrophages, natural killer cells and neutrophils related immune escape, PRRs associated immune evasion, and NLRP3 inflammasome associated immune evasion. Simultaneously we have discussed the significant mutations related to emerging variants and immune escape, such as mutations in the RBD region (N439K, L452R, E484K, N501Y, K444R) and other parts (D614G, P681R) of the S-glycoprotein. Mutations in other locations such as NSP1, NSP3, NSP6, ORF3, and ORF8 have also been discussed. Finally, we have illustrated the emerging variants’ partial vaccine (BioNTech/Pfizer mRNA/Oxford-AstraZeneca/BBIBP-CorV/ZF2001/Moderna mRNA/Johnson & Johnson vaccine) escape ability. This review will help gain in-depth knowledge related to immune escape, antibody escape, and partial vaccine escape ability of the virus and assist in controlling the current pandemic and prepare for the next.

          Related collections

          Most cited references281

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical Characteristics of Coronavirus Disease 2019 in China

          Abstract Background Since December 2019, when coronavirus disease 2019 (Covid-19) emerged in Wuhan city and rapidly spread throughout China, data have been needed on the clinical characteristics of the affected patients. Methods We extracted data regarding 1099 patients with laboratory-confirmed Covid-19 from 552 hospitals in 30 provinces, autonomous regions, and municipalities in mainland China through January 29, 2020. The primary composite end point was admission to an intensive care unit (ICU), the use of mechanical ventilation, or death. Results The median age of the patients was 47 years; 41.9% of the patients were female. The primary composite end point occurred in 67 patients (6.1%), including 5.0% who were admitted to the ICU, 2.3% who underwent invasive mechanical ventilation, and 1.4% who died. Only 1.9% of the patients had a history of direct contact with wildlife. Among nonresidents of Wuhan, 72.3% had contact with residents of Wuhan, including 31.3% who had visited the city. The most common symptoms were fever (43.8% on admission and 88.7% during hospitalization) and cough (67.8%). Diarrhea was uncommon (3.8%). The median incubation period was 4 days (interquartile range, 2 to 7). On admission, ground-glass opacity was the most common radiologic finding on chest computed tomography (CT) (56.4%). No radiographic or CT abnormality was found in 157 of 877 patients (17.9%) with nonsevere disease and in 5 of 173 patients (2.9%) with severe disease. Lymphocytopenia was present in 83.2% of the patients on admission. Conclusions During the first 2 months of the current outbreak, Covid-19 spread rapidly throughout China and caused varying degrees of illness. Patients often presented without fever, and many did not have abnormal radiologic findings. (Funded by the National Health Commission of China and others.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical and immunologic features in severe and moderate Coronavirus Disease 2019

            Journal of Clinical Investigation
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China

              Dear Editor, The rapid emergence of COVID-19 in Wuhan city, Hubei Province, China, has resulted in thousands of deaths [1]. Many infected patients, however, presented mild flu-like symptoms and quickly recover [2]. To effectively prioritize resources for patients with the highest risk, we identified clinical predictors of mild and severe patient outcomes. Using the database of Jin Yin-tan Hospital and Tongji Hospital, we conducted a retrospective multicenter study of 68 death cases (68/150, 45%) and 82 discharged cases (82/150, 55%) with laboratory-confirmed infection of SARS-CoV-2. Patients met the discharge criteria if they had no fever for at least 3 days, significantly improved respiratory function, and had negative SARS-CoV-2 laboratory test results twice in succession. Case data included demographics, clinical characteristics, laboratory results, treatment options and outcomes. For statistical analysis, we represented continuous measurements as means (SDs) or as medians (IQRs) which compared with Student’s t test or the Mann–Whitney–Wilcoxon test. Categorical variables were expressed as numbers (%) and compared by the χ 2 test or Fisher’s exact test. The distribution of the enrolled patients’ age is shown in Fig. 1a. There was a significant difference in age between the death group and the discharge group (p < 0.001) but no difference in the sex ratio (p = 0.43). A total of 63% (43/68) of patients in the death group and 41% (34/82) in the discharge group had underlying diseases (p = 0.0069). It should be noted that patients with cardiovascular diseases have a significantly increased risk of death when they are infected with SARS-CoV-2 (p < 0.001). A total of 16% (11/68) of the patients in the death group had secondary infections, and 1% (1/82) of the patients in the discharge group had secondary infections (p = 0.0018). Laboratory results showed that there were significant differences in white blood cell counts, absolute values of lymphocytes, platelets, albumin, total bilirubin, blood urea nitrogen, blood creatinine, myoglobin, cardiac troponin, C-reactive protein (CRP) and interleukin-6 (IL-6) between the two groups (Fig. 1b and Supplementary Table 1). Fig. 1 a Age distribution of patients with confirmed COVID-19; b key laboratory parameters for the outcomes of patients with confirmed COVID-19; c interval from onset of symptom to death of patients with confirmed COVID-19; d summary of the cause of death of 68 died patients with confirmed COVID-19 The survival times of the enrolled patients in the death group were analyzed. The distribution of survival time from disease onset to death showed two peaks, with the first one at approximately 14 days (22 cases) and the second one at approximately 22 days (17 cases) (Fig. 1c). An analysis of the cause of death was performed. Among the 68 fatal cases, 36 patients (53%) died of respiratory failure, five patients (7%) with myocardial damage died of circulatory failure, 22 patients (33%) died of both, and five remaining died of an unknown cause (Fig. 1d). Based on the analysis of the clinical data, we confirmed that some patients died of fulminant myocarditis. In this study, we first reported that the infection of SARS-CoV-2 may cause fulminant myocarditis. Given that fulminant myocarditis is characterized by a rapid progress and a severe state of illness [3], our results should alert physicians to pay attention not only to the symptoms of respiratory dysfunction but also the symptoms of cardiac injury. Further, large-scale studies and the studies on autopsy are needed to confirm our analysis. In conclusion, predictors of a fatal outcome in COVID-19 cases included age, the presence of underlying diseases, the presence of secondary infection and elevated inflammatory indicators in the blood. The results obtained from this study also suggest that COVID-19 mortality might be due to virus-activated “cytokine storm syndrome” or fulminant myocarditis. Electronic supplementary material Below is the link to the electronic supplementary material. Supplementary material 1 (DOCX 38 kb)
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                09 February 2022
                2022
                09 February 2022
                : 13
                : 801522
                Affiliations
                [1] 1 Department of Biotechnology, School of Life Science and Biotechnology, Adamas University , Kolkata, India
                [2] 2 Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital , Chuncheon-si, South Korea
                [3] 3 Department of Zoology, Fakir Mohan University , Vyasa Vihar, Balasore, India
                Author notes

                Edited by: James J. Kobie, University of Alabama at Birmingham, United States

                Reviewed by: Zehua Sun, University of Pittsburgh, United States; Premkumar Lakshmanane, University of North Carolina at Chapel Hill, United States

                *Correspondence: Chiranjib Chakraborty, drchiranjib@ 123456yahoo.com ; Sang-Soo Lee, 123sslee@ 123456gmail.com

                †These authors have contributed equally to this work

                This article was submitted to Viral Immunology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2022.801522
                8863680
                35222380
                852c73e5-0a1c-4b82-88d8-19cea790c159
                Copyright © 2022 Chakraborty, Sharma, Bhattacharya and Lee

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 25 October 2021
                : 05 January 2022
                Page count
                Figures: 9, Tables: 5, Equations: 0, References: 277, Pages: 26, Words: 11775
                Categories
                Immunology
                Review

                Immunology
                immune escape,vaccine escape,sars-cov-2,escape mutation,variants
                Immunology
                immune escape, vaccine escape, sars-cov-2, escape mutation, variants

                Comments

                Comment on this article