13
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      SARS-CoV-2 Spike mutations modify the interaction between virus Spike and human ACE2 receptors

      brief-report

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The high mutability of the SARS-CoV-2 virus is a growing concern among scientific communities and health professionals since it brings the effectiveness of repurposed drugs and vaccines for COVID-19 into question. Although the mutational investigation of the Spike protein of the SARS-CoV-2 virus has been confirmed by many different researchers, there is no thorough investigation carried out at the interacting region to reveal the mutational status and its associated severity. All the energetically favorable mutations and their detailed analytical features that could impact the infection severity of the SARS-CoV-2 virus need to be identified. Therefore, we have thoroughly investigated the most important site of the SARS-CoV-2 virus, which is the interface region (Residue 417–505) of the virus Spike that interacts with the human ACE2 receptor. Further, we have utilized molecular dynamic simulation to observe the relative stability of the Spike protein with partner ACE2, as a consequence of these mutations. In our study, we have identified 52 energetically favorable Spike mutations at the interface while binding to ACE2, of which only 36 significantly enhance the stabilization of the Spike-ACE2 complex. The stability order and molecular interactions of these mutations were also identified. The highest stabilizing mutation V503D confirmed in our study is also known for neutralization resistance.

          Graphical abstract

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2

          How SARS-CoV-2 binds to human cells Scientists are racing to learn the secrets of severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2), which is the cause of the pandemic disease COVID-19. The first step in viral entry is the binding of the viral trimeric spike protein to the human receptor angiotensin-converting enzyme 2 (ACE2). Yan et al. present the structure of human ACE2 in complex with a membrane protein that it chaperones, B0AT1. In the context of this complex, ACE2 is a dimer. A further structure shows how the receptor binding domain of SARS-CoV-2 interacts with ACE2 and suggests that it is possible that two trimeric spike proteins bind to an ACE2 dimer. The structures provide a basis for the development of therapeutics targeting this crucial interaction. Science, this issue p. 1444
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SARS-CoV-2 variants, spike mutations and immune escape

            Although most mutations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome are expected to be either deleterious and swiftly purged or relatively neutral, a small proportion will affect functional properties and may alter infectivity, disease severity or interactions with host immunity. The emergence of SARS-CoV-2 in late 2019 was followed by a period of relative evolutionary stasis lasting about 11 months. Since late 2020, however, SARS-CoV-2 evolution has been characterized by the emergence of sets of mutations, in the context of ‘variants of concern’, that impact virus characteristics, including transmissibility and antigenicity, probably in response to the changing immune profile of the human population. There is emerging evidence of reduced neutralization of some SARS-CoV-2 variants by postvaccination serum; however, a greater understanding of correlates of protection is required to evaluate how this may impact vaccine effectiveness. Nonetheless, manufacturers are preparing platforms for a possible update of vaccine sequences, and it is crucial that surveillance of genetic and antigenic changes in the global virus population is done alongside experiments to elucidate the phenotypic impacts of mutations. In this Review, we summarize the literature on mutations of the SARS-CoV-2 spike protein, the primary antigen, focusing on their impacts on antigenicity and contextualizing them in the protein structure, and discuss them in the context of observed mutation frequencies in global sequence datasets. The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been characterized by the emergence of mutations and so-called variants of concern that impact virus characteristics, including transmissibility and antigenicity. In this Review, members of the COVID-19 Genomics UK (COG-UK) Consortium and colleagues summarize mutations of the SARS-CoV-2 spike protein, focusing on their impacts on antigenicity and contextualizing them in the protein structure, and discuss them in the context of observed mutation frequencies in global sequence datasets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology

              The ongoing pandemic spread of a novel human coronavirus, SARS-COV-2, associated with severe pneumonia disease (COVID-19), has resulted in the generation of tens of thousands of virus genome sequences. The rate of genome generation is unprecedented, yet there is currently no coherent nor accepted scheme for naming the expanding phylogenetic diversity of SARS-CoV-2. We present a rational and dynamic virus nomenclature that uses a phylogenetic framework to identify those lineages that contribute most to active spread. Our system is made tractable by constraining the number and depth of hierarchical lineage labels and by flagging and de-labelling virus lineages that become unobserved and hence are likely inactive. By focusing on active virus lineages and those spreading to new locations this nomenclature will assist in tracking and understanding the patterns and determinants of the global spread of SARS-CoV-2.
                Bookmark

                Author and article information

                Journal
                Biochem Biophys Res Commun
                Biochem Biophys Res Commun
                Biochemical and Biophysical Research Communications
                Elsevier Inc.
                0006-291X
                1090-2104
                23 June 2022
                23 June 2022
                Affiliations
                [a ]School of Basic Sciences, Indian Institute of Technology, Mandi, HP, 175005, India
                [b ]Advanced Material Research Centre, Indian Institute of Technology, Mandi, HP, 175005, India
                [c ]Bio-X Centre, Indian Institute of Technology, Mandi, HP, 175005, India
                [d ]Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
                Author notes
                []Corresponding author. School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh, India.
                [∗∗ ]Corresponding author. Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States,
                Article
                S0006-291X(22)00918-4
                10.1016/j.bbrc.2022.06.064
                9221686
                35772213
                850c8400-0b34-438e-aa86-bb7041073b0b
                © 2022 Elsevier Inc. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 26 May 2022
                : 21 June 2022
                Categories
                Article

                Biochemistry
                covid-19,sars-cov-2,mutation,spike protein,interface residues
                Biochemistry
                covid-19, sars-cov-2, mutation, spike protein, interface residues

                Comments

                Comment on this article