8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mesenchymal stem cells therapy: A promising method for the treatment of uterine scars and premature ovarian failure

      , , , , ,
      Tissue and Cell
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: not found

          Multilineage cells from human adipose tissue: implications for cell-based therapies.

          Future cell-based therapies such as tissue engineering will benefit from a source of autologous pluripotent stem cells. For mesodermal tissue engineering, one such source of cells is the bone marrow stroma. The bone marrow compartment contains several cell populations, including mesenchymal stem cells (MSCs) that are capable of differentiating into adipogenic, osteogenic, chondrogenic, and myogenic cells. However, autologous bone marrow procurement has potential limitations. An alternate source of autologous adult stem cells that is obtainable in large quantities, under local anesthesia, with minimal discomfort would be advantageous. In this study, we determined if a population of stem cells could be isolated from human adipose tissue. Human adipose tissue, obtained by suction-assisted lipectomy (i.e., liposuction), was processed to obtain a fibroblast-like population of cells or a processed lipoaspirate (PLA). These PLA cells can be maintained in vitro for extended periods with stable population doubling and low levels of senescence. Immunofluorescence and flow cytometry show that the majority of PLA cells are of mesodermal or mesenchymal origin with low levels of contaminating pericytes, endothelial cells, and smooth muscle cells. Finally, PLA cells differentiate in vitro into adipogenic, chondrogenic, myogenic, and osteogenic cells in the presence of lineage-specific induction factors. In conclusion, the data support the hypothesis that a human lipoaspirate contains multipotent cells and may represent an alternative stem cell source to bone marrow-derived MSCs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Increasing Trend in Caesarean Section Rates: Global, Regional and National Estimates: 1990-2014

            Background Caesarean section (CS) rates continue to evoke worldwide concern because of their steady increase, lack of consensus on the appropriate CS rate and the associated additional short- and long-term risks and costs. We present the latest CS rates and trends over the last 24 years. Methods We collected nationally-representative data on CS rates between 1990 to 2014 and calculated regional and subregional weighted averages. We conducted a longitudinal analysis calculating differences in CS rates as absolute change and as the average annual rate of increase (AARI). Results According to the latest data from 150 countries, currently 18.6% of all births occur by CS, ranging from 6% to 27.2% in the least and most developed regions, respectively. Latin America and the Caribbean region has the highest CS rates (40.5%), followed by Northern America (32.3%), Oceania (31.1%), Europe (25%), Asia (19.2%) and Africa (7.3%). Based on the data from 121 countries, the trend analysis showed that between 1990 and 2014, the global average CS rate increased 12.4% (from 6.7% to 19.1%) with an average annual rate of increase of 4.4%. The largest absolute increases occurred in Latin America and the Caribbean (19.4%, from 22.8% to 42.2%), followed by Asia (15.1%, from 4.4% to 19.5%), Oceania (14.1%, from 18.5% to 32.6%), Europe (13.8%, from 11.2% to 25%), Northern America (10%, from 22.3% to 32.3%) and Africa (4.5%, from 2.9% to 7.4%). Asia and Northern America were the regions with the highest and lowest average annual rate of increase (6.4% and 1.6%, respectively). Conclusion The use of CS worldwide has increased to unprecedented levels although the gap between higher- and lower-resource settings remains. The information presented is essential to inform policy and global and regional strategies aimed at optimizing the use of CS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Endometrial regenerative cells: A novel stem cell population

              Angiogenesis is a critical component of the proliferative endometrial phase of the menstrual cycle. Thus, we hypothesized that a stem cell-like population exist and can be isolated from menstrual blood. Mononuclear cells collected from the menstrual blood contained a subpopulation of adherent cells which could be maintained in tissue culture for >68 doublings and retained expression of the markers CD9, CD29, CD41a, CD44, CD59, CD73, CD90 and CD105, without karyotypic abnormalities. Proliferative rate of the cells was significantly higher than control umbilical cord derived mesenchymal stem cells, with doubling occurring every 19.4 hours. These cells, which we termed "Endometrial Regenerative Cells" (ERC) were capable of differentiating into 9 lineages: cardiomyocytic, respiratory epithelial, neurocytic, myocytic, endothelial, pancreatic, hepatic, adipocytic, and osteogenic. Additionally, ERC produced MMP3, MMP10, GM-CSF, angiopoietin-2 and PDGF-BB at 10–100,000 fold higher levels than two control cord blood derived mesenchymal stem cell lines. Given the ease of extraction and pluripotency of this cell population, we propose ERC as a novel alternative to current stem cells sources.
                Bookmark

                Author and article information

                Contributors
                Journal
                Tissue and Cell
                Tissue and Cell
                Elsevier BV
                00408166
                February 2022
                February 2022
                : 74
                : 101676
                Article
                10.1016/j.tice.2021.101676
                34798583
                8501ae89-4b62-4aa8-80eb-da7639ea5297
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article