43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic disruption of Ano5 in mice does not recapitulate human ANO5-deficient muscular dystrophy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Anoctamin 5 ( ANO5) is a member of a conserved gene family (TMEM16), which codes for proteins predicted to have eight transmembrane domains and putative Ca 2+-activated chloride channel (CaCC) activity. It was recently reported that mutations in this gene result in the development of limb girdle muscular dystrophy type 2L (LGMD2L), Miyoshi myopathy type 3 (MMD3), or gnathodiaphyseal dysplasia 1 (GDD1). Currently, there is a lack of animal models for the study of the physiological function of Ano5 and the disease pathology in its absence.

          Results

          Here, we report the generation and characterization of the first Ano5-knockout (KO) mice. Our data demonstrate that the KO mice did not present overt skeletal or cardiac muscle pathology at rest conditions from birth up to 18 months of age. There were no significant differences in force production or force deficit following repeated eccentric contractions between wild type (WT) and KO mice. Although cardiac hypertrophy developed similarly in both KO and WT mice after daily isoproterenol (ISO, 100 mg/kg) treatment via intraperitoneal injection for 2 weeks, they were functionally indiscernible. However, microarray analysis identified the genes involved in lipid metabolism, and complement pathways were altered in the KO skeletal muscle.

          Conclusions

          Taken together, these data provide the evidence to show that genetic ablation of Ano5 in C57BL/6J mice does not cause overt pathology in skeletal and cardiac muscles, but Ano5 deficiency may lead to altered lipid metabolism and inflammation signaling.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s13395-015-0069-z) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Of mice and not men: differences between mouse and human immunology.

          Mice are the experimental tool of choice for the majority of immunologists and the study of their immune responses has yielded tremendous insight into the workings of the human immune system. However, as 65 million years of evolution might suggest, there are significant differences. Here we outline known discrepancies in both innate and adaptive immunity, including: balance of leukocyte subsets, defensins, Toll receptors, inducible NO synthase, the NK inhibitory receptor families Ly49 and KIR, FcR, Ig subsets, the B cell (BLNK, Btk, and lambda5) and T cell (ZAP70 and common gamma-chain) signaling pathway components, Thy-1, gammadelta T cells, cytokines and cytokine receptors, Th1/Th2 differentiation, costimulatory molecule expression and function, Ag-presenting function of endothelial cells, and chemokine and chemokine receptor expression. We also provide examples, such as multiple sclerosis and delayed-type hypersensitivity, where complex multicomponent processes differ. Such differences should be taken into account when using mice as preclinical models of human disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TMEM16A confers receptor-activated calcium-dependent chloride conductance.

            Calcium (Ca(2+))-activated chloride channels are fundamental mediators in numerous physiological processes including transepithelial secretion, cardiac and neuronal excitation, sensory transduction, smooth muscle contraction and fertilization. Despite their physiological importance, their molecular identity has remained largely unknown. Here we show that transmembrane protein 16A (TMEM16A, which we also call anoctamin 1 (ANO1)) is a bona fide Ca(2+)-activated chloride channel that is activated by intracellular Ca(2+) and Ca(2+)-mobilizing stimuli. With eight putative transmembrane domains and no apparent similarity to previously characterized channels, ANO1 defines a new family of ionic channels. The biophysical properties as well as the pharmacological profile of ANO1 are in full agreement with native Ca(2+)-activated chloride currents. ANO1 is expressed in various secretory epithelia, the retina and sensory neurons. Furthermore, knockdown of mouse Ano1 markedly reduced native Ca(2+)-activated chloride currents as well as saliva production in mice. We conclude that ANO1 is a candidate Ca(2+)-activated chloride channel that mediates receptor-activated chloride currents in diverse physiological processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity.

              Calcium-dependent chloride channels are required for normal electrolyte and fluid secretion, olfactory perception, and neuronal and smooth muscle excitability. The molecular identity of these membrane proteins is still unclear. Treatment of bronchial epithelial cells with interleukin-4 (IL-4) causes increased calcium-dependent chloride channel activity, presumably by regulating expression of the corresponding genes. We performed a global gene expression analysis to identify membrane proteins that are regulated by IL-4. Transfection of epithelial cells with specific small interfering RNA against each of these proteins shows that TMEM16A, a member of a family of putative plasma membrane proteins with unknown function, is associated with calcium-dependent chloride current, as measured with halide-sensitive fluorescent proteins, short-circuit current, and patch-clamp techniques. Our results indicate that TMEM16A is an intrinsic constituent of the calcium-dependent chloride channel. Identification of a previously unknown family of membrane proteins associated with chloride channel function will improve our understanding of chloride transport physiopathology and allow for the development of pharmacological tools useful for basic research and drug development.
                Bookmark

                Author and article information

                Contributors
                jing.xu@osumc.edu
                mona.elrefaey@osumc.edu
                li.xu@osumc.edu
                lixia.zhao@osumc.edu
                yandi.gao@osumc.edu
                floyd.180@osu.edu
                tallib.karaze@osumc.edu
                janssen.10@osu.edu
                (614) 685-9214 , renzhi.han@osumc.edu
                Journal
                Skelet Muscle
                Skelet Muscle
                Skeletal Muscle
                BioMed Central (London )
                2044-5040
                21 December 2015
                21 December 2015
                2015
                : 5
                : 43
                Affiliations
                [ ]Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
                [ ]Department of Physiology and Cell Biology, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
                Article
                69
                10.1186/s13395-015-0069-z
                4685631
                26693275
                84fa5091-2692-4b30-b73a-5f11f7540523
                © Xu et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 18 September 2015
                : 17 November 2015
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000050, National Heart, Lung, and Blood Institute;
                Award ID: HL116546
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100000069, National Institute of Arthritis and Musculoskeletal and Skin Diseases;
                Award ID: AR064241
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Rheumatology
                anoctamin 5,heart,muscular dystrophy,skeletal muscle,tmem16e
                Rheumatology
                anoctamin 5, heart, muscular dystrophy, skeletal muscle, tmem16e

                Comments

                Comment on this article