15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      AMP-activated protein kinase beta subunit tethers alpha and gamma subunits via its C-terminal sequence (186-270).

      The Journal of Biological Chemistry
      AMP-Activated Protein Kinases, Amino Acid Sequence, Animals, COS Cells, Cercopithecus aethiops, Fungal Proteins, genetics, metabolism, Humans, Molecular Sequence Data, Multienzyme Complexes, chemistry, Protein Structure, Quaternary, Protein Structure, Tertiary, Protein Subunits, Protein-Serine-Threonine Kinases, Rats, Recombinant Fusion Proteins, Sequence Alignment

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          AMP-activated protein kinase (AMPK) is an important metabolic stress-sensing protein kinase responsible for regulating metabolism in response to changing energy demand and nutrient supply. Mammalian AMPK is a stable alphabetagamma heterotrimer comprising a catalytic alpha and two non-catalytic subunits, beta and gamma. The beta subunit targets AMPK to membranes via an N-terminal myristoyl group and to glycogen via a mid-molecule glycogen-binding domain. Here we find that the conserved C-terminal 85-residue sequence of the beta subunit, beta1-(186-270), is sufficient to form an active AMP-dependent heterotrimer alpha1beta1-(186-270)-gamma1, whereas the 25-residue beta1 C-terminal (246-270) sequence is sufficient to bind gamma1, gamma2, or gamma3 but not the alpha subunit. Deletion of the beta C-terminal Ile-270 precludes betagamma association in the absence of the alpha subunit, but the presence of the alpha subunit or substitution of Ile-270 with Ala or Glu restores betagamma binding. Truncation of the alpha subunit reveals that beta1 binding requires the alpha1-(313-473) sequence. The conserved C-terminal 85-residue sequence of the beta subunit (90% between beta1 and beta2) is the primary alphagamma binding sequence responsible for the formation of the AMPK alphabetagamma heterotrimer.

          Related collections

          Author and article information

          Comments

          Comment on this article