12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dynamic covalent chemistry in polymer networks: a mechanistic perspective

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A selection of dynamic chemistries is highlighted, with a focus on the reaction mechanisms of molecular network rearrangements, and on how mechanistic profiles can be related to the mechanical and physicochemical properties of polymer materials.

          Abstract

          The incorporation of dynamic covalent linkages within and between polymer chains brings new properties to classical thermosetting polymer formulations, in particular in terms of thermal responses, processing options and intrinsic recycling abilities. Thus, in recent years, there has been a rapidly growing interest in the design and synthesis of monomers and cross-linkers that can be used as robust but at the same time reactive organic building blocks for dynamic polymer networks. In this perspective, a selection of such chemistries is highlighted, with a particular focus on the reaction mechanisms of molecular network rearrangements, and on how various mechanistic profiles can be related to the mechanical and physicochemical properties of polymer materials, in particular in relation with vitrimers, the recently defined third category of polymer materials. The recent advances in this area are not only expected to help direct promising emerging polymer applications, but also point towards the need for a better fundamental understanding of chemical reactivity within a macromolecular context.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          A thermally re-mendable cross-linked polymeric material.

          We have developed a transparent organic polymeric material that can repeatedly mend or "re-mend" itself under mild conditions. The material is a tough solid at room temperature and below with mechanical properties equaling those of commercial epoxy resins. At temperatures above 120 degrees C, approximately 30% (as determined by solid-state nuclear magnetic resonance spectroscopy) of "intermonomer" linkages disconnect but then reconnect upon cooling, This process is fully reversible and can be used to restore a fractured part of the polymer multiple times, and it does not require additional ingredients such as a catalyst, additional monomer, or special surface treatment of the fractured interface.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Silica-like malleable materials from permanent organic networks.

            Permanently cross-linked materials have outstanding mechanical properties and solvent resistance, but they cannot be processed and reshaped once synthesized. Non-cross-linked polymers and those with reversible cross-links are processable, but they are soluble. We designed epoxy networks that can rearrange their topology by exchange reactions without depolymerization and showed that they are insoluble and processable. Unlike organic compounds and polymers whose viscosity varies abruptly near the glass transition, these networks show Arrhenius-like gradual viscosity variations like those of vitreous silica. Like silica, the materials can be wrought and welded to make complex objects by local heating without the use of molds. The concept of a glass made by reversible topology freezing in epoxy networks can be readily scaled up for applications and generalized to other chemistries.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Emerging applications of stimuli-responsive polymer materials.

              Responsive polymer materials can adapt to surrounding environments, regulate transport of ions and molecules, change wettability and adhesion of different species on external stimuli, or convert chemical and biochemical signals into optical, electrical, thermal and mechanical signals, and vice versa. These materials are playing an increasingly important part in a diverse range of applications, such as drug delivery, diagnostics, tissue engineering and 'smart' optical systems, as well as biosensors, microelectromechanical systems, coatings and textiles. We review recent advances and challenges in the developments towards applications of stimuli-responsive polymeric materials that are self-assembled from nanostructured building blocks. We also provide a critical outline of emerging developments.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                PCOHC2
                Polymer Chemistry
                Polym. Chem.
                Royal Society of Chemistry (RSC)
                1759-9954
                1759-9962
                November 19 2019
                2019
                : 10
                : 45
                : 6091-6108
                Affiliations
                [1 ]Polymer Chemistry Research Group and Laboratory for Organic Synthesis
                [2 ]Department of Organic and Macromolecular Chemistry
                [3 ]Ghent University
                [4 ]B-9000 Ghent
                [5 ]Belgium
                [6 ]UMR Gulliver 7083 CNRS
                [7 ]ESPCI Paris
                [8 ]PSL Research University
                [9 ]75005 Paris
                [10 ]France
                Article
                10.1039/C9PY01260E
                845fb694-2781-4199-b58d-cbc51b834a93
                © 2019

                http://creativecommons.org/licenses/by-nc/3.0/

                History

                Comments

                Comment on this article