10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The effect of FEC as a co-solvent on the electrochemical performance and surface chemistry of silicon nanowire (SiNW) anodes was thoroughly investigated. Enhanced electrochemical performance was observed for SiNW anodes in alkyl carbonates electrolyte solutions containing fluoroethylene carbonate (FEC). Reduced irreversible capacity losses accompanied by enhanced and stable reversible capacities over prolonged cycling were achieved with FEC-containing electrolyte solutions. TEM studies provided evidence for the complete and incomplete lithiation of SiNW's in FEC-containing and FEC-free electrolyte solutions, respectively. Scanning electron microscopy (SEM) results proved the formation of much thinner and compact surface films on SiNW's in FEC-containing solutions. However, thicker surface films were identified for SiNW electrodes cycled in FEC-free solutions. SiNW electrodes develop lower impedance in electrolyte solutions containing FEC in contrast to standard (FEC-free) solutions. The surface chemistry of SiNW electrodes cycled in FEC-modified and standard electrolytes were investigated using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. The impact of FEC as a co-solvent on the electrochemical behavior of SiNW electrodes is discussed herein in light of the spectroscopic and microscopic studies.

          Related collections

          Author and article information

          Journal
          Langmuir
          Langmuir : the ACS journal of surfaces and colloids
          1520-5827
          0743-7463
          Jan 10 2012
          : 28
          : 1
          Affiliations
          [1 ] Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel.
          Article
          10.1021/la203712s
          22103983
          e94f2397-40a4-4770-8bc0-9f9bbce838bb
          History

          Comments

          Comment on this article