0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Plasmalogens improve swimming performance by modulating the expression of genes involved in amino acid and lipid metabolism, oxidative stress, and ferroptosis in an Alzheimer's disease zebrafish model

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plasmalogens (PLs) are critical to human health.

          Abstract

          Plasmalogens (PLs) are critical to human health. Studies have reported a link between the downregulation of PLs levels and cognitive impairments in patients with Alzheimer's disease (AD). However, the underlying mechanisms remain to be clarified. In the present study, an AlCl 3-induced AD zebrafish model was established, and the model was used to elucidate the neuroprotective effects of PLs on AD by analysing the transcriptional profiles of zebrafish in the control, AD model, AD_PL, and PL groups. Chronic AlCl 3 exposure caused swimming performance impairments in the zebrafish, yet PLs supplementation could improve the dyskinesia recovery rate in the AD zebrafish model. Through transcriptional profiling, a total of 5413 statistically significant differentially expressed genes (DEGs) were identified among the groups. In addition to the DEGs involved in amino acid metabolism, we found that the genes related to iron homeostasis, lipid peroxidation, and oxidative stress, all of which contribute to ferroptosis, were dramatically altered among different groups. These results suggest that seafood-derived PLs, in addition to their role in eliminating oxidative stress, can improve the swimming performance in AlCl 3-exposed zebrafish partly by suppressing neuronal ferroptosis and accelerating synaptic transmission at the transcriptional level. This study provides evidence for PLs to be developed as a functional food supplement to relieve AD symptoms.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Zebrafish as an emerging model for studying complex brain disorders.

          The zebrafish (Danio rerio) is rapidly becoming a popular model organism in pharmacogenetics and neuropharmacology. Both larval and adult zebrafish are currently used to increase our understanding of brain function, dysfunction, and their genetic and pharmacological modulation. Here we review the developing utility of zebrafish in the analysis of complex brain disorders (including, e.g., depression, autism, psychoses, drug abuse, and cognitive deficits), also covering zebrafish applications towards the goal of modeling major human neuropsychiatric and drug-induced syndromes. We argue that zebrafish models of complex brain disorders and drug-induced conditions are a rapidly emerging critical field in translational neuroscience and pharmacology research. Copyright © 2013 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other conditions

            Most neurodegenerative disorders are associated with aggregated protein deposits. In the case of Alzheimer disease (AD), extracellular amyloid-β (Aβ) aggregates and intracellular tau neurofibrillary tangles are the two neuropathological hallmarks of the disease. Aβ-PET imaging has already been approved for clinical use and is being used in clinical trials of anti-Aβ therapies both for patient recruitment and as an outcome measure. These studies have shown that Aβ accumulation is a protracted process that can extend for more than 2 decades before the onset of clinical AD. This Review describes how in vivo brain imaging of Aβ pathology has revolutionized the evaluation of patients with clinical AD by providing robust and reproducible statements of global or regional brain Aβ burden and enabling the monitoring of disease progression. The role of selective tau imaging is discussed, focusing on how longitudinal tau and Aβ imaging studies might reveal the various effects (sequential and/or parallel, independent and/or synergistic) of these proteins on progression, cognition and other disease-specific biomarkers of neurodegeneration. Finally, imaging studies are discussed in the context of elucidating the respective roles of Aβ and tau in AD and in advancing our understanding of the relationship and/or interplay between these two proteinopathies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dysregulation of lipids in Alzheimer's disease and their role as potential biomarkers

              The brain is highly enriched in lipids, and an intensive study of these lipids may be informative, not only of normal brain function but also of changes with age and in disease. In recent years, the development of highly sensitive mass spectrometry platforms and other high-throughput technologies has enabled the discovery of complex changes in the entire lipidome. This lipidomics approach promises to be a particularly useful tool for identifying diagnostic biomarkers for early detection of age-related neurodegenerative disease, such as Alzheimer's disease (AD), which has till recently been limited to protein- and gene-centric approaches. This review highlights known lipid changes affecting the AD brain and presents an update on the progress of lipid biomarker research in AD. Important considerations for designing large-scale lipidomics experiments are discussed to help standardize findings across different laboratories, as well as challenges associated with moving toward clinical application.
                Bookmark

                Author and article information

                Contributors
                Journal
                FFOUAI
                Food & Function
                Food Funct.
                Royal Society of Chemistry (RSC)
                2042-6496
                2042-650X
                November 29 2021
                2021
                : 12
                : 23
                : 12087-12097
                Affiliations
                [1 ]Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
                [2 ]Zhejiang Provincial People's Hospital, Hangzhou 310014, China
                [3 ]Central Hospital of Haining, Haining 314408, Zhejiang, China
                [4 ]Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
                Article
                10.1039/D1FO01471D
                34783821
                823f3916-d4cb-4b54-9d76-f01b5af5d261
                © 2021

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article