3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Selenium Alleviates Cerebral Ischemia/Reperfusion Injury by Regulating Oxidative Stress, Mitochondrial Fusion and Ferroptosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To clarify the potential role of selenium (Se) on cerebral ischemia/reperfusion (I/R) injury, we utilized mouse middle cerebral artery occlusion (MCAO) followed by reperfusion as an animal model and oxygen–glucose deprivation and reoxygenation (OGD/R) to treat N2a cells as a cell model, respectively. MCAO model was established in mice and then divided into different groups with or without Se treatment. TTC staining was used to observe whether the cerebral I/R modeling was successful, and the apoptosis level was determined by TUNEL staining. The expression of GPx-4 and p22phox was assessed by western blot. In vitro experiments, the OGD/R induced oxidative stress in N2a cells was assessed by levels of GSH/GSSG, malondialdehyde, superoxide dismutase and iron content, respectively. QRT-PCR was used to detect the mRNA levels of Cox-2, Fth1, Mfn1 and mtDNA in N2a cells. JC-1 staining and flow cytometry was performed to detect the mitochondrial membrane potential. Se treatment alleviated cerebral I/R injury and improved the survival rate of mice. Additionally, Se treatment apparently attenuated oxidative stress and inhibited iron accumulation in MCAO model mice and OGD/R model of N2a cells. In terms of its mechanism, Se could up-regulate Mfn1 expression to alleviate oxidative stress and ferroptosis by promoting mitochondrial fusion in vivo and vitro. These findings suggest that Se may have great potential in alleviating cerebral I/R injury.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Ferroptosis: an iron-dependent form of nonapoptotic cell death.

          Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease

            Ferroptosis is a form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides to lethal levels. Emerging evidence suggests that ferroptosis represents an ancient vulnerability caused by the incorporation of polyunsaturated fatty acids into cellular membranes, and cells have developed complex systems that exploit and defend against this vulnerability in different contexts. The sensitivity to ferroptosis is tightly linked to numerous biological processes, including amino acid, iron, and polyunsaturated fatty acid metabolism, and the biosynthesis of glutathione, phospholipids, NADPH, and coenzyme Q10. Ferroptosis has been implicated in the pathological cell death associated with degenerative diseases (i.e., Alzheimer's, Huntington's, and Parkinson's diseases), carcinogenesis, stroke, intracerebral hemorrhage, traumatic brain injury, ischemia-reperfusion injury, and kidney degeneration in mammals and is also implicated in heat stress in plants. Ferroptosis may also have a tumor-suppressor function that could be harnessed for cancer therapy. This Primer reviews the mechanisms underlying ferroptosis, highlights connections to other areas of biology and medicine, and recommends tools and guidelines for studying this emerging form of regulated cell death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of Mitochondria in Ferroptosis

              Ferroptosis is a regulated necrosis process driven by iron-dependent lipid peroxidation. Although ferroptosis and cellular metabolism interplay with each other, whether mitochondria are involved in ferroptosis is under debate. Here we demonstrate that mitochondria play a crucial role in cysteine deprivation-induced ferroptosis but not in that induced by inhibiting glutathione peroxidase-4 (GPX4), the most downstream component of the ferroptosis pathway. Mechanistically, cysteine deprivation leads to mitochondrial membrane potential hyperpolarization and lipid peroxide accumulation. Inhibition of mitochondrial TCA cycle or electron transfer chain (ETC) mitigated mitochondrial membrane potential hyperpolarization, lipid peroxide accumulation, and ferroptosis. Blockage of glutaminolysis had the same inhibitory effect, which was counteracted by supplying downstream TCA cycle intermediates. Importantly, loss of function of fumarate hydratase, a tumor suppressor and TCA cycle component, confers resistance to cysteine deprivation-induced ferroptosis. Collectively, this work demonstrates the crucial role of mitochondria in cysteine deprivation-induced ferroptosis and implicates ferroptosis in tumor suppression. Gao et al show that mitochondria play a crucial and proactive role in cysteine deprivation-induced ferroptosis but not in GPX4 inhibition-induced ferroptosis. Mechanistically, the mitochondrial TCA cycle and electron transport chain promote cysteine deprivation-induced ferroptosis by serving as the major source for cellular lipid peroxide production. The anaplerotic role of glutaminolysis in replenishing the TCA cycle intermediates explains its involvement in cysteine deprivation-induced ferroptosis. Importantly, mitochondria-mediated ferroptosis might contribute to the antitumor function of fumarate hydratase, a component of the TCA cycle and a tumor suppressor in renal cancer.
                Bookmark

                Author and article information

                Contributors
                abertmd@163.com
                hljdyx183@163.com
                shuibin1988@126.com
                Journal
                Neurochem Res
                Neurochem Res
                Neurochemical Research
                Springer US (New York )
                0364-3190
                1573-6903
                20 June 2022
                20 June 2022
                2022
                : 47
                : 10
                : 2992-3002
                Affiliations
                [1 ]GRID grid.459351.f, Department of Central Laboratory, , The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People’s Hospital), ; Yancheng, 224008 Jiangsu China
                [2 ]GRID grid.459351.f, Department of Neurology, , The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People’s Hospital), ; Yancheng, 224008 Jiangsu China
                Article
                3643
                10.1007/s11064-022-03643-8
                9470641
                35725978
                86c431d8-58ac-4570-8ba1-05cc9a15b4d2
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 14 February 2022
                : 18 May 2022
                : 19 May 2022
                Funding
                Funded by: the Programs of Scientific Research Project of Jiangsu Commission of Health of China
                Award ID: H2019088
                Award Recipient :
                Funded by: the Foundation Plan for Outstanding People of The Sixth Peak of Jiangsu Province of China
                Award ID: 2019-WSN-313
                Award Recipient :
                Funded by: the Medical and Scientific Development Program of Yancheng of Jiangsu Province of China
                Award ID: YK2021009
                Award Recipient :
                Categories
                Original Paper
                Custom metadata
                © Springer Science+Business Media, LLC, part of Springer Nature 2022

                Neurosciences
                cerebral ischemia/reperfusion,selenium,oxidative stress,ferroptosis,mfn1,mitochondrial fusion

                Comments

                Comment on this article