There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
To design microneedles that minimize pain, this study tested the hypothesis that microneedles cause significantly less pain than a 26-gauge hypodermic needle, and that decreasing microneedle length and the number of microneedles reduces pain in normal human volunteers. Single microneedles with lengths ranging from 480 to 1450 microm, widths from 160 to 465 microm, thicknesses from 30 to 100 microm, and tip angles from 20 to 90 degrees; and arrays containing 5 or 50 microneedles were inserted into the volar forearms of 10 healthy, human volunteers in a double-blinded, randomized study. Visual analog scale pain scores were recorded and compared with each other and to the pain from a 26-gauge hypodermic needle. All microneedles investigated were significantly less painful than the hypodermic needle with microneedle pain scores varying from 5% to 40% of the hypodermic needle. Microneedle length had the strongest effect on pain, where a 3-fold increase in length increased the pain score by 7-fold. The number of microneedles also affected the pain score, where a 10-fold increase in the number of microneedles increased pain just over 2-fold. Microneedle tip angle, thickness, and width did not significantly influence pain. Microneedles are significantly less painful than a 26-gauge hypodermic needle over the range of dimensions investigated. Decreasing microneedle length and number of microneedles reduces pain.
Coated microneedles have been shown to deliver proteins and DNA into the skin in a minimally invasive manner. However, detailed studies examining coating methods and their breadth of applicability are lacking. This study's goal was to develop a simple, versatile and controlled microneedle coating process to make uniform coatings on microneedles and establish the breadth of molecules and particles that can be coated onto microneedles. First, microneedles were fabricated from stainless steel sheets as single microneedles or arrays of microneedles. Next, a novel micron-scale dip-coating process and a GRAS coating formulation were designed to reliably produce uniform coatings on both individual and arrays of microneedles. This process was used to coat compounds including calcein, vitamin B, bovine serum albumin and plasmid DNA. Modified vaccinia virus and microparticles of 1 to 20 micro m diameter were also coated. Coatings could be localized just to the needle shafts and formulated to dissolve within 20 s in porcine cadaver skin. Histological examination validated that microneedle coatings were delivered into the skin and did not wipe off during insertion. In conclusion, this study presents a simple, versatile, and controllable method to coat microneedles with proteins, DNA, viruses and microparticles for rapid delivery into the skin.
Rapid developments in the field of molecular biology and gene technology resulted in generation of many macromolecular drugs including peptides, proteins, polysaccharides and nucleic acids in great number possessing superior pharmacological efficacy with site specificity and devoid of untoward and toxic effects. However, the main impediment for the oral delivery of these drugs as potential therapeutic agents is their extensive presystemic metabolism, instability in acidic environment resulting into inadequate and erratic oral absorption. Parenteral route of administration is the only established route that overcomes all these drawbacks associated with these orally less/inefficient drugs. But, these formulations are costly, have least patient compliance, require repeated administration, in addition to the other hazardous effects associated with this route. Over the last few decades' pharmaceutical scientists throughout the world are trying to explore transdermal and transmucosal routes as an alternative to injections. Among the various transmucosal sites available, mucosa of the buccal cavity was found to be the most convenient and easily accessible site for the delivery of therapeutic agents for both local and systemic delivery as retentive dosage forms, because it has expanse of smooth muscle which is relatively immobile, abundant vascularization, rapid recovery time after exposure to stress and the near absence of langerhans cells. Direct access to the systemic circulation through the internal jugular vein bypasses drugs from the hepatic first pass metabolism leading to high bioavailability. Further, these dosage forms are self-administrable, cheap and have superior patient compliance. Developing a dosage form with the optimum pharmacokinetics is a promising area for continued research as it is enormously important and intellectually challenging. With the right dosage form design, local environment of the mucosa can be controlled and manipulated in order to optimize the rate of drug dissolution and permeation. A rational approach to dosage form design requires a complete understanding of the physicochemical and biopharmaceutical properties of the drug and excipients. Advances in experimental and computational methodologies will be helpful in shortening the processing time from formulation design to clinical use. This paper aims to review the developments in the buccal adhesive drug delivery systems to provide basic principles to the young scientists, which will be useful to circumvent the difficulties associated with the formulation design.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.