39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Materials for Immunotherapy

      1 , 2 , 1 , 2 , 3 , 1 , 2 , 1 , 2
      Advanced Materials
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references529

          • Record: found
          • Abstract: not found
          • Article: not found

          Analysis of nanoparticle delivery to tumours

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer Cell Membrane-Coated Nanoparticles for Anticancer Vaccination and Drug Delivery

            Cell-derived nanoparticles have been garnering increased attention due to their ability to mimic many of the natural properties displayed by their source cells. This top-down engineering approach can be applied toward the development of novel therapeutic strategies owing to the unique interactions enabled through the retention of complex antigenic information. Herein, we report on the biological functionalization of polymeric nanoparticles with a layer of membrane coating derived from cancer cells. The resulting core–shell nanostructures, which carry the full array of cancer cell membrane antigens, offer a robust platform with applicability toward multiple modes of anticancer therapy. We demonstrate that by coupling the particles with an immunological adjuvant, the resulting formulation can be used to promote a tumor-specific immune response for use in vaccine applications. Moreover, we show that by taking advantage of the inherent homotypic binding phenomenon frequently observed among tumor cells the membrane functionalization allows for a unique cancer targeting strategy that can be utilized for drug delivery applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of target geometry in phagocytosis.

              Phagocytosis is a principal component of the body's innate immunity in which macrophages internalize targets in an actin-dependent manner. Targets vary widely in shape and size and include particles such as pathogens and senescent cells. Despite considerable progress in understanding this complicated process, the role of target geometry in phagocytosis has remained elusive. Previous studies on phagocytosis have been performed using spherical targets, thereby overlooking the role of particle shape. Using polystyrene particles of various sizes and shapes, we studied phagocytosis by alveolar macrophages. We report a surprising finding that particle shape, not size, plays a dominant role in phagocytosis. All shapes were capable of initiating phagocytosis in at least one orientation. However, the local particle shape, measured by tangent angles, at the point of initial contact dictates whether macrophages initiate phagocytosis or simply spread on particles. The local shape determines the complexity of the actin structure that must be created to initiate phagocytosis and allow the membrane to move over the particle. Failure to create the required actin structure results in simple spreading and not internalization. Particle size primarily impacts the completion of phagocytosis in cases where particle volume exceeds the cell volume.
                Bookmark

                Author and article information

                Journal
                Advanced Materials
                Adv. Mater.
                Wiley
                0935-9648
                1521-4095
                July 2019
                June 28 2019
                : 1901633
                Affiliations
                [1 ]John A. Paulson School of Engineering and Applied SciencesHarvard University Cambridge MA 02138 USA
                [2 ]Wyss Institute for Biologically Inspired EngineeringHarvard University Cambridge MA 02138 USA
                [3 ]Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of Technology Cambridge MA 02139 USA
                Article
                10.1002/adma.201901633
                31250498
                d17fabf4-bb06-49cd-84e5-7db8b47a322e
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#am

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article