1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNA-541-5p REgulates Type II Alveolar Epithelial Cell Proliferation and Activity by Modulating the HMGB1 Expression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Acute lung injury (ALI) is characterized by excessive production of inflammatory factors and alveolar epithelial damage, type II alveolar epithelial (ATII) cells participate in the repairment of the damaged lung tissue in ALI. Recently, microRNAs (miRNAs) have been found to play crucial roles in the amelioration of various inflammation-induced diseases, including ALI. However, the biological function and the mechanisms of action of miRNAs in the regulation of inflammation, and how ATII cells repair damaged lung tissue in ALI remain unknown. In this study, a model of ALI was established using LPS, and ATII cells were isolated and treated with LPS. Hematoxylin and eosin staining revealed the injury to lung tissues. In this study we found that miR-541-5p expression was significantly decreased in ALI tissue and in the LPS-induced ATII cell model. Additionally, the LPS-induced model showed suppression of ATII cell proliferation and activity. Furthermore, overexpression of miR-541-5p was found to promote cell activity and proliferation in the LPS-induced ATII cell model. Moreover, a luciferase assay illustrated that HMGB1 is a target of miR-541-5p, HMGB1 knockdown blocked the inhibitory effect of miR-541-5p on LPS-induced ATII cells. Ultimately, our study demonstrated that expression of p38, JNK, and ERK in LPS-induced ATII cells increased significantly. These results suggest that miR-541-5p is a key effector in ALI tissue, and that LPS-induced ATII cells act by regulating HMGB1 expression. This effect may be related to excessive activation of the JNK/ERK/p38 signaling pathway.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries.

          Limited information exists about the epidemiology, recognition, management, and outcomes of patients with the acute respiratory distress syndrome (ARDS).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acute respiratory distress syndrome

            The acute respiratory distress syndrome (ARDS) is a common cause of respiratory failure in critically ill patients and is defined by the acute onset of noncardiogenic pulmonary oedema, hypoxaemia and the need for mechanical ventilation. ARDS occurs most often in the setting of pneumonia, sepsis, aspiration of gastric contents or severe trauma and is present in ~10% of all patients in intensive care units worldwide. Despite some improvements, mortality remains high at 30–40% in most studies. Pathological specimens from patients with ARDS frequently reveal diffuse alveolar damage, and laboratory studies have demonstrated both alveolar epithelial and lung endothelial injury, resulting in accumulation of protein-rich inflammatory oedematous fluid in the alveolar space. Diagnosis is based on consensus syndromic criteria, with modifications for under-resourced settings and in paediatric patients. Treatment focuses on lung-protective ventilation; no specific pharmacotherapies have been identified. Long-term outcomes of patients with ARDS are increasingly recognized as important research targets, as many patients survive ARDS only to have ongoing functional and/or psychological sequelae. Future directions include efforts to facilitate earlier recognition of ARDS, identifying responsive subsets of patients and ongoing efforts to understand fundamental mechanisms of lung injury to design specific treatments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Type 2 alveolar cells are stem cells in adult lung.

              Gas exchange in the lung occurs within alveoli, air-filled sacs composed of type 2 and type 1 epithelial cells (AEC2s and AEC1s), capillaries, and various resident mesenchymal cells. Here, we use a combination of in vivo clonal lineage analysis, different injury/repair systems, and in vitro culture of purified cell populations to obtain new information about the contribution of AEC2s to alveolar maintenance and repair. Genetic lineage-tracing experiments showed that surfactant protein C-positive (SFTPC-positive) AEC2s self renew and differentiate over about a year, consistent with the population containing long-term alveolar stem cells. Moreover, if many AEC2s were specifically ablated, high-resolution imaging of intact lungs showed that individual survivors undergo rapid clonal expansion and daughter cell dispersal. Individual lineage-labeled AEC2s placed into 3D culture gave rise to self-renewing "alveolospheres," which contained both AEC2s and cells expressing multiple AEC1 markers, including HOPX, a new marker for AEC1s. Growth and differentiation of the alveolospheres occurred most readily when cocultured with primary PDGFRα⁺ lung stromal cells. This population included lipofibroblasts that normally reside close to AEC2s and may therefore contribute to a stem cell niche in the murine lung. Results suggest that a similar dynamic exists between AEC2s and mesenchymal cells in the human lung.
                Bookmark

                Author and article information

                Journal
                Shock
                Shock
                SHK
                Shock (Augusta, Ga.)
                Lippincott Williams & Wilkins (Hagerstown, MD )
                1073-2322
                1540-0514
                April 2022
                22 September 2021
                : 57
                : 4
                : 536-543
                Affiliations
                Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
                Author notes
                Address reprint requests to Yan Luo, and Lei Zhuang, Department of Anesthesiology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai 200025, China. E-mail: 18917762576@ 123456163.com ; leileihead@ 123456hotmail.com
                Article
                SHOCK-D-21-00212 00009
                10.1097/SHK.0000000000001852
                8906253
                35271544
                81f648d9-e4e0-4837-bc90-903112f1dcc9
                Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the Shock Society.

                This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0

                History
                : 18 May 2021
                : 08 June 2021
                : 17 August 2021
                Categories
                Basic Science Aspects
                Custom metadata
                TRUE

                acute lung injury,alveolar epithelial cells,hmgb1,mir-541-5p,type ii

                Comments

                Comment on this article