5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      S100A9 Regulated M1/M2 Macrophage Polarization in Interleukin-10-Induced Promotion of Malignant Pleural Effusion

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Interleukin-10 (IL-10) promotes the formation and development of malignant pleural effusion (MPE). Previous studies have elucidated the pathogenesis from the view of the immune-regulation function of CD4 + T-cells. However, the underlying mechanism is still not fully understood. In this study, our results showed that IL-10 deficiency reduced the percentage of macrophages in mouse MPE and regulated M1/M2 polarization in vivo and in vitro. The migration capacity of tumor cells was suppressed, and apoptosis was promoted when tumor cells were cocultured with MPE macrophages in the absence of IL-10. Messenger RNA sequencing of MPE macrophages showed that S100A9 was downregulated in IL-10 −/− mice. Bone marrow-derived macrophages obtained from wild-type mice transfected with S100A9-specific small interfering RNAs (siRNAs) also showed less M2 and more M1 polarization than those from the siRNA control group. Furthermore, downregulation of S100A9 using S100A9-specific siRNA suppressed MPE development, decreased macrophages, and modulated macrophage polarization in MPE in vivo. In conclusion, S100A9 plays a vital role in the process of IL-10 deficiency-mediated MPE suppression by regulating M1/M2 polarization, thus influencing the tumor-migration capacity and apoptosis. This could result in clinically applicable strategies to inhibit the formation of MPE by regulating the polarization of MPE macrophages.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Interleukin-10 and the interleukin-10 receptor.

          Interleukin-10 (IL-10), first recognized for its ability to inhibit activation and effector function of T cells, monocytes, and macrophages, is a multifunctional cytokine with diverse effects on most hemopoietic cell types. The principal routine function of IL-10 appears to be to limit and ultimately terminate inflammatory responses. In addition to these activities, IL-10 regulates growth and/or differentiation of B cells, NK cells, cytotoxic and helper T cells, mast cells, granulocytes, dendritic cells, keratinocytes, and endothelial cells. IL-10 plays a key role in differentiation and function of a newly appreciated type of T cell, the T regulatory cell, which may figure prominently in control of immune responses and tolerance in vivo. Uniquely among hemopoietic cytokines, IL-10 has closely related homologs in several virus genomes, which testify to its crucial role in regulating immune and inflammatory responses. This review highlights findings that have advanced our understanding of IL-10 and its receptor, as well as its in vivo function in health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Macrophages, innate immunity and cancer: balance, tolerance, and diversity.

            Smouldering inflammation is a component of the tumor microenvironment and represents the 7(th) hallmark of cancer. Tumor-associated macrophages (TAM) have served as a paradigm for cancer promoting inflammation. Tumor-associated macrophages orchestrate various aspects of cancer, including: diversion and skewing of adaptive responses; cell growth; angiogenesis; matrix deposition and remodelling; the construction of a metastatic niche and actual metastasis; response to hormones and chemotherapeutic agents. T and B cells or cancer cell-derived signals orchestrate the functional reprogramming of TAM. In general TAM acquire M2-like properties and resemble 'tolerant' macrophages, though there is diversity in pathways and phenotypes in different tumors. TAM can also express antitumor activity. Thus, in response to microenvironmental signals, TAM can exert dual influence on tumor growth and progression. Copyright 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              HemI: A Toolkit for Illustrating Heatmaps

              Recent high-throughput techniques have generated a flood of biological data in all aspects. The transformation and visualization of multi-dimensional and numerical gene or protein expression data in a single heatmap can provide a concise but comprehensive presentation of molecular dynamics under different conditions. In this work, we developed an easy-to-use tool named HemI (Heat map Illustrator), which can visualize either gene or protein expression data in heatmaps. Additionally, the heatmaps can be recolored, rescaled or rotated in a customized manner. In addition, HemI provides multiple clustering strategies for analyzing the data. Publication-quality figures can be exported directly. We propose that HemI can be a useful toolkit for conveniently visualizing and manipulating heatmaps. The stand-alone packages of HemI were implemented in Java and can be accessed at http://hemi.biocuckoo.org/down.php.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Immunol Res
                J Immunol Res
                jir
                Journal of Immunology Research
                Hindawi
                2314-8861
                2314-7156
                2023
                25 July 2023
                : 2023
                : 3473464
                Affiliations
                1Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
                2Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
                3Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
                Author notes

                Academic Editor: Patrice Petit

                Author information
                https://orcid.org/0000-0002-1220-4882
                Article
                10.1155/2023/3473464
                10393522
                81da6b8b-6f27-48fa-9e85-213e403efda6
                Copyright © 2023 Xue-Bin Pei et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 February 2023
                : 28 May 2023
                : 24 June 2023
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 82000098
                Funded by: Reform and Development Program of Beijing Institute of Respiratory Medicine
                Award ID: Ggyfz202331
                Award ID: Ggyfz202314
                Categories
                Research Article

                Comments

                Comment on this article