31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Efferent System or Olivocochlear Function Bundle – Fine Regulator and Protector of Hearing Perception

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The efferent system of the ear possesses several distinct functions, in particular noise protection, mediation of selective attention and improvement of signal to noise ratio. It also supports adaptation and frequency selectivity by modification of the micromechanical properties of outer hair cells. There are many differences in anatomy and physiology between the medial and lateral olivocochlear system suggesting that they are functionally separate systems. The efferent system is affected by inner ear stressors, e.g. noise, ototoxic drugs, and might play a key role in tinnitus generation and maintenance. The anatomy, physiology and its realtionships to inner ear pathologies are discussed in this review article.

          Related collections

          Most cited references151

          • Record: found
          • Abstract: found
          • Article: not found

          Embryological origin for autism: developmental anomalies of the cranial nerve motor nuclei.

          The underlying brain injury that leads to autism has been difficult to identify. The diagnostic criteria of the disease are not readily associated with any brain region or system, nor are they mimicked by vascular accidents, tumors, or degenerative neurological diseases occurring in adults. Fortuitously, a recent report of autism induced by thalidomide exposure provides evidence that the disease originates by an injury at the time of closure of the neural tube. The human data suggest that the initiating lesion includes the motor cranial nerve nuclei. To test this hypothesis, we first examined motor nuclei in the brainstem of a human autistic case. The autopsy brain exhibited near-complete absence of the facial nucleus and superior olive along with shortening of the brainstem between the trapezoid body and the inferior olive. A similar deficit has been reported in Hoxa-1 gene knockout mice in which pattern formation of the hindbrain is disrupted during neurulation. Alternatively, exposure to antimitotic agents just after neural tube closure could produce the observed pattern of deficits. Thus, the lesions observed in the autopsy case appear to match those predicted by the thalidomide cases in both time of origin and central nervous system (CNS) location. To produce similar brain lesions experimentally, we exposed rat embryos to valproic acid, a second teratogen newly linked to autism. Dams received 350 mg/kg of valproic acid (VPA) on day 11.5 (the day of neural tube closure), day 12, or day 12.5 gestation. Each treatment significantly reduced the number of motor neurons counted in matched sections of the earliest-forming motor nuclei (V, XII), and progressively later exposures affected the VIth and IIIrd cranial nerve nuclei. All treatments spared the facial nucleus, which forms still later. Counts from the mesencephalic nucleus of trigeminal, the dorsal motor nucleus of the vagus, and the locus ceruleus were not affected by exposure to VPA, even though these nuclei form during the period when exposure occurred. Despite its effects on the motor nuclei, valproic acid exposure did not alter the further development of the brain in any obvious way. Treated animals were robust and had no external malformations. The autopsy data and experimental data from rats confirm that CNS injuries occurring during or just after neural tube closure can lead to a selective loss of neurons derived from the basal plate of the rhombencephalon. The results add two new lines of evidence that place the initiating injury for autism around the time of neural tube closure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure and innervation of the cochlea.

            The role of the cochlea is to transduce complex sound waves into electrical neural activity in the auditory nerve. Hair cells of the organ of Corti are the sensory cells of hearing. The inner hair cells perform the transduction and initiate the depolarization of the spiral ganglion neurons. The outer hair cells are accessory sensory cells that enhance the sensitivity and selectivity of the cochlea. Neural feedback loops that bring efferent signals to the outer hair cells assist in sharpening and amplifying the signals. The stria vascularis generates the endocochlear potential and maintains the ionic composition of the endolymph, the fluid in which the apical surface of the hair cells is bathed. The mechanical characteristics of the basilar membrane and its related structures further enhance the frequency selectivity of the auditory transduction mechanism. The tectorial membrane is an extracellular matrix, which provides mass loading on top of the organ of Corti, facilitating deflection of the stereocilia. This review deals with the structure of the normal mature mammalian cochlea and includes recent data on the molecular organization of the main cell types within the cochlea.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The olivary peduncle and other fiber projections of the superior olivary complex.

                Bookmark

                Author and article information

                Journal
                Int J Biomed Sci
                Int J Biomed Sci
                IJBS
                International Journal of Biomedical Science : IJBS
                Master Publishing Group
                1550-9702
                1555-2810
                December 2010
                : 6
                : 4
                : 276-288
                Affiliations
                Department of Otorhinolaryngology, Head and Neck Surgery, Marienhospital Gelsenkirchen, Virchowstr. 122, Gelsenkirchen, Germany
                Author notes
                Corresponding author: Raphael Richard Ciuman, Uranusbogen 15, 45478 Mülheim, Germany. E-mail: ciuman.raphael@ 123456cityweb.de .
                Article
                IJBS-06-276
                10.59566/IJBS.2010.6276
                3615293
                23675203
                81b89078-b6c2-4ed1-ac01-4e4a01c71e99
                © Raphael Richard Ciuman. Licensee Master Publishing Group

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.5/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 July 2010
                : 21 July 2010
                Categories
                Review Article

                olivocochlear bundle,medial efferent system,lateral efferent system,superior olive,tinnitus,neurotransmitter

                Comments

                Comment on this article