Endurance training may be associated with arrhythmogenic cardiac remodelling of the right ventricle (RV). We examined whether myocardial dysfunction following intense endurance exercise affects the RV more than the left ventricle (LV) and whether cumulative exposure to endurance competition influences cardiac remodelling (including fibrosis) in well-trained athletes. Forty athletes were studied at baseline, immediately following an endurance race (3-11 h duration) and 1-week post-race. Evaluation included cardiac troponin (cTnI), B-type natriuretic peptide, and echocardiography [including three-dimensional volumes, ejection fraction (EF), and systolic strain rate]. Delayed gadolinium enhancement (DGE) on cardiac magnetic resonance imaging (CMR) was assessed as a marker of myocardial fibrosis. Relative to baseline, RV volumes increased and all functional measures decreased post-race, whereas LV volumes reduced and function was preserved. B-type natriuretic peptide (13.1 ± 14.0 vs. 25.4 ± 21.4 ng/L, P = 0.003) and cTnI (0.01 ± .03 vs. 0.14 ± .17 μg/L, P < 0.0001) increased post-race and correlated with reductions in RVEF (r = 0.52, P = 0.001 and r = 0.49, P = 0.002, respectively), but not LVEF. Right ventricular ejection fraction decreased with increasing race duration (r = -0.501, P < 0.0001) and VO(2)max (r = -0.359, P = 0.011). Right ventricular function mostly recovered by 1 week. On CMR, DGE localized to the interventricular septum was identified in 5 of 39 athletes who had greater cumulative exercise exposure and lower RVEF (47.1 ± 5.9 vs. 51.1 ± 3.7%, P = 0.042) than those with normal CMR. Intense endurance exercise causes acute dysfunction of the RV, but not the LV. Although short-term recovery appears complete, chronic structural changes and reduced RV function are evident in some of the most practiced athletes, the long-term clinical significance of which warrants further study.