5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Construction of hierarchical V4C3-MXene/MoS2/C nanohybrids for high rate lithium-ion batteries.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MoS2 is a promising anode candidate for high-performance lithium-ion batteries (LIBs) due to its unique layered structure and high specific capacity. However, the poor conductivity and unsatisfactory structural stability limit its practical application. Recently, a new class of 2D materials, V4C3-Mxene, has been found to combine metallic conductivity, high structural stability and rich surface chemistries. Herein, a facile method has been developed to fabricate V4C3-MXene/MoS2/C nanohybrids. Ultrasmall and few-layered MoS2 nanosheets are uniformly anchored on the surface of V4C3-MXene with a thin carbon-coating layer. The ultrasmall and few-layered MoS2 nanosheets can enlarge the specific areas, reduce the diffusion distance of lithium ions, and accelerate the transfer of charge carriers. As a supporting substrate, V4C3-MXene endows the nanohybrid with high electrical conductivity, strong structural stability, and fast reaction kinetics. Moreover, the carbon-coating layer can further enhance the electrical conductivity and structural stability of the hybrid material. Benefiting from these advantages, the V4C3-MXene/MoS2/C electrode shows an excellent cycling stability with a high reversible capability of 622.6 mA h g-1 at 1 A g-1 after 450 cycles, and a superior rate capability of 500.0 mA h g-1 at 10 A g-1. Thus, the V4C3-MXene/MoS2/C nanohybrid could become a promising anode material for high rate LIBs.

          Related collections

          Author and article information

          Journal
          Nanoscale
          Nanoscale
          Royal Society of Chemistry (RSC)
          2040-3372
          2040-3364
          Jan 02 2020
          : 12
          : 2
          Affiliations
          [1 ] Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China. bchzhao@issp.ac.cn linshuai17@issp.ac.cn.
          Article
          10.1039/c9nr07646h
          31850436
          813e1d25-f129-4002-8752-94046992364e
          History

          Comments

          Comment on this article