5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Design strategy for MXene and metal chalcogenides/oxides hybrids for supercapacitors, secondary batteries and electro/photocatalysis

      , , , , , , ,
      Coordination Chemistry Reviews
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references206

          • Record: found
          • Abstract: not found
          • Article: not found

          Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene)

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide

              The intercalation of ions into layered compounds has long been exploited in energy storage devices such as batteries and electrochemical capacitors. However, few host materials are known for ions much larger than lithium. We demonstrate the spontaneous intercalation of cations from aqueous salt solutions between two-dimensional (2D) Ti3C2 MXene layers. MXenes combine 2D conductive carbide layers with a hydrophilic, primarily hydroxyl-terminated surface. A variety of cations, including Na(+), K(+), NH4(+), Mg(2+), and Al(3+), can also be intercalated electrochemically, offering capacitance in excess of 300 farads per cubic centimeter (much higher than that of porous carbons). This study provides a basis for exploring a large family of 2D carbides and carbonitrides in electrochemical energy storage applications using single- and multivalent ions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Coordination Chemistry Reviews
                Coordination Chemistry Reviews
                Elsevier BV
                00108545
                August 2022
                August 2022
                : 464
                : 214544
                Article
                10.1016/j.ccr.2022.214544
                9f0951d3-4e3c-494c-ab4e-4f7cd9210a47
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article