43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cyclooxygenase-1-Selective Inhibitors Based on the ( E)-2′- Des-methyl-sulindac Sulfide Scaffold

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prostaglandins (PGs) are powerful lipid mediators in many physiological and pathophysiological responses. They are produced by oxidation of arachidonic acid (AA) by cyclooxygenases (COX-1 and COX-2) followed by metabolism of endoperoxide intermediates by terminal PG synthases. PG biosynthesis is inhibited by nonsteroidal anti-inflammatory drugs (NSAIDs). Specific inhibition of COX-2 has been extensively investigated, but relatively few COX-1-selective inhibitors have been described. Recent reports of a possible contribution of COX-1 in analgesia, neuroinflammation, or carcinogenesis suggest that COX-1 is a potential therapeutic target. We designed, synthesized, and evaluated a series of ( E)-2′- des-methyl-sulindac sulfide ( E-DMSS) analogues for inhibition of COX-1. Several potent and selective inhibitors were discovered, and the most promising compounds were active against COX-1 in intact ovarian carcinoma cells (OVCAR-3). The compounds inhibited tumor cell proliferation but only at concentrations >100-fold higher than the concentrations that inhibit COX-1 activity. E-DMSS analogues may be useful probes of COX-1 biology in vivo and promising leads for COX-1-targeted therapeutic agents.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition.

          Nonsteroidal anti-inflammatory drugs (NSAIDs) represent one of the most highly utilized classes of pharmaceutical agents in medicine. All NSAIDs act through inhibiting prostaglandin synthesis, a catalytic activity possessed by two distinct cyclooxygenase (COX) isozymes encoded by separate genes. The discovery of COX-2 launched a new era in NSAID pharmacology, resulting in the synthesis, marketing, and widespread use of COX-2 selective drugs. These pharmaceutical agents have quickly become established as important therapeutic medications with potentially fewer side effects than traditional NSAIDs. Additionally, characterization of the two COX isozymes is allowing the discrimination of the roles each play in physiological processes such as homeostatic maintenance of the gastrointestinal tract, renal function, blood clotting, embryonic implantation, parturition, pain, and fever. Of particular importance has been the investigation of COX-1 and -2 isozymic functions in cancer, dysregulation of inflammation, and Alzheimer's disease. More recently, additional heterogeneity in COX-related proteins has been described, with the finding of variants of COX-1 and COX-2 enzymes. These variants may function in tissue-specific physiological and pathophysiological processes and may represent important new targets for drug therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase.

            Constitutive cyclooxygenase (COX-1; prostaglandin-endoperoxide synthase, EC 1.14.99.1) is present in cells under physiological conditions, whereas COX-2 is induced by some cytokines, mitogens, and endotoxin presumably in pathological conditions, such as inflammation. Therefore, we have assessed the relative inhibitory effects of some nonsteroidal antiinflammatory drugs on the activities of COX-1 (in bovine aortic endothelial cells) and COX-2 (in endotoxin-activated J774.2 macrophages) in intact cells, broken cells, and purified enzyme preparations (COX-1 in sheep seminal vesicles; COX-2 in sheep placenta). Similar potencies of aspirin, indomethacin, and ibuprofen against the broken cell and purified enzyme preparations indicated no influence of species. Aspirin, indomethacin, and ibuprofen were more potent inhibitors of COX-1 than COX-2 in all models used. The relative potencies of aspirin and indomethacin varied only slightly between models, although the IC50 values were different. Ibuprofen was more potent as an inhibitor of COX-2 in intact cells than in either broken cells or purified enzymes. Sodium salicylate was a weak inhibitor of both COX isoforms in intact cells and was inactive against COX in either broken cells or purified enzyme preparations. Diclofenac, BW 755C, acetaminophen, and naproxen were approximately equipotent inhibitors of COX-1 and COX-2 in intact cells. BF 389, an experimental drug currently being tested in humans, was the most potent and most selective inhibitor of COX-2 in intact cells. Thus, there are clear pharmacological differences between the two enzymes. The use of such models of COX-1 and COX-2 activity will lead to the identification of selective inhibitors of COX-2 with presumably less side effects than present therapies. Some inhibitors had higher activity in intact cells than against purified enzymes, suggesting that pure enzyme preparations may not be predictive of therapeutic action.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cyclooxygenase-2 is instrumental in Parkinson's disease neurodegeneration.

              Parkinson's disease (PD) is a neurodegenerative disorder of uncertain pathogenesis characterized by the loss of the nigrostriatal dopaminergic neurons, which can be modeled by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Increased expression of cyclooxygenase type 2 (COX-2) and production of prostaglandin E(2) have been implicated in neurodegeneration in several pathological settings. Here we show that COX-2, the rate-limiting enzyme in prostaglandin E(2) synthesis, is up-regulated in brain dopaminergic neurons of both PD and MPTP mice. COX-2 induction occurs through a JNKc-Jun-dependent mechanism after MPTP administration. We demonstrate that targeting COX-2 does not protect against MPTP-induced dopaminergic neurodegeneration by mitigating inflammation. Instead, we provide evidence that COX-2 inhibition prevents the formation of the oxidant species dopamine-quinone, which has been implicated in the pathogenesis of PD. This study supports a critical role for COX-2 in both the pathogenesis and selectivity of the PD neurodegenerative process. Because of the safety record of the COX-2 inhibitors, and their ability to penetrate the blood-brain barrier, these drugs may be therapies for PD.
                Bookmark

                Author and article information

                Journal
                J Med Chem
                jm
                jmcmar
                Journal of Medicinal Chemistry
                American Chemical Society
                0022-2623
                1520-4804
                20 January 2012
                08 March 2012
                : 55
                : 5
                : 2287-2300
                Affiliations
                [1]A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology and Vanderbilt-Ingram Cancer Center, simpleVanderbilt University School of Medicine , Nashville, Tennessee 37232, United States
                Author notes
                [* ]Tel: 615-343-7329. Fax: 615-343-7534. E-mail: larry.marnett@ 123456vanderbilt.edu .
                Article
                10.1021/jm201528b
                3297362
                22263894
                81165b63-7040-4b26-9f14-7acacc2ee59c
                Copyright © 2012 American Chemical Society

                This is an open-access article distributed under the ACS AuthorChoice Terms & Conditions. Any use of this article, must conform to the terms of that license which are available at http://pubs.acs.org.

                History
                : 11 November 2011
                : 14 February 2012
                : 08 March 2012
                : 20 January 2012
                Funding
                National Institutes of Health, United States
                Categories
                Article
                Custom metadata
                jm201528b
                jm-2011-01528b

                Pharmaceutical chemistry
                Pharmaceutical chemistry

                Comments

                Comment on this article