5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Gelatin/agar-based color-indicator film integrated with Clitoria ternatea flower anthocyanin and zinc oxide nanoparticles for monitoring freshness of shrimp

      , ,
      Food Hydrocolloids
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references99

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits

          ABSTRACT Anthocyanins are colored water-soluble pigments belonging to the phenolic group. The pigments are in glycosylated forms. Anthocyanins responsible for the colors, red, purple, and blue, are in fruits and vegetables. Berries, currants, grapes, and some tropical fruits have high anthocyanins content. Red to purplish blue-colored leafy vegetables, grains, roots, and tubers are the edible vegetables that contain a high level of anthocyanins. Among the anthocyanin pigments, cyanidin-3-glucoside is the major anthocyanin found in most of the plants. The colored anthocyanin pigments have been traditionally used as a natural food colorant. The color and stability of these pigments are influenced by pH, light, temperature, and structure. In acidic condition, anthocyanins appear as red but turn blue when the pH increases. Chromatography has been largely applied in extraction, separation, and quantification of anthocyanins. Besides the use of anthocyanidins and anthocyanins as natural dyes, these colored pigments are potential pharmaceutical ingredients that give various beneficial health effects. Scientific studies, such as cell culture studies, animal models, and human clinical trials, show that anthocyanidins and anthocyanins possess antioxidative and antimicrobial activities, improve visual and neurological health, and protect against various non-communicable diseases. These studies confer the health effects of anthocyanidins and anthocyanins, which are due to their potent antioxidant properties. Different mechanisms and pathways are involved in the protective effects, including free-radical scavenging pathway, cyclooxygenase pathway, mitogen-activated protein kinase pathway, and inflammatory cytokines signaling. Therefore, this review focuses on the role of anthocyanidins and anthocyanins as natural food colorants and their nutraceutical properties for health. Abbreviations: CVD: Cardiovascular disease VEGF: Vascular endothelial growth factor
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni.

            The antibacterial effect of zinc oxide (ZnO) nanoparticles on Campylobacter jejuni was investigated for inhibition and inactivation of cell growth. The results showed that C. jejuni was extremely sensitive to treatment with ZnO nanoparticles. The MIC of ZnO nanoparticles for C. jejuni was determined to be 0.05 to 0.025 mg/ml, which is 8- to 16-fold lower than that for Salmonella enterica serovar Enteritidis and Escherichia coli O157:H7 (0.4 mg/ml). The action of ZnO nanoparticles against C. jejuni was determined to be bactericidal, not bacteriostatic. Scanning electron microscopy examination revealed that the majority of the cells transformed from spiral shapes into coccoid forms after exposure to 0.5 mg/ml of ZnO nanoparticles for 16 h, which is consistent with the morphological changes of C. jejuni under other stress conditions. These coccoid cells were found by ethidium monoazide-quantitative PCR (EMA-qPCR) to have a certain level of membrane leakage. To address the molecular basis of ZnO nanoparticle action, a large set of genes involved in cell stress response, motility, pathogenesis, and toxin production were selected for a gene expression study. Reverse transcription-quantitative PCR (RT-qPCR) showed that in response to treatment with ZnO nanoparticles, the expression levels of two oxidative stress genes (katA and ahpC) and a general stress response gene (dnaK) were increased 52-, 7-, and 17-fold, respectively. These results suggest that the antibacterial mechanism of ZnO nanoparticles is most likely due to disruption of the cell membrane and oxidative stress in Campylobacter.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as Time–Temperature Indicators for application in intelligent food packaging

                Bookmark

                Author and article information

                Contributors
                Journal
                Food Hydrocolloids
                Food Hydrocolloids
                Elsevier BV
                0268005X
                March 2022
                March 2022
                : 124
                : 107294
                Article
                10.1016/j.foodhyd.2021.107294
                80945ee6-ac6a-4d46-a86b-9ea47a43f58b
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article