0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Molybdenum carbide clusters for thermal conversion of CO2 to CO via reverse water-gas shift reaction

      , , , , ,
      Journal of Energy Chemistry
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT.

          A software package for the analysis of X-ray absorption spectroscopy (XAS) data is presented. This package is based on the IFEFFIT library of numerical and XAS algorithms and is written in the Perl programming language using the Perl/Tk graphics toolkit. The programs described here are: (i) ATHENA, a program for XAS data processing, (ii) ARTEMIS, a program for EXAFS data analysis using theoretical standards from FEFF and (iii) HEPHAESTUS, a collection of beamline utilities based on tables of atomic absorption data. These programs enable high-quality data analysis that is accessible to novices while still powerful enough to meet the demands of an expert practitioner. The programs run on all major computer platforms and are freely available under the terms of a free software license.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Atomic cobalt on nitrogen-doped graphene for hydrogen generation

            Reduction of water to hydrogen through electrocatalysis holds great promise for clean energy, but its large-scale application relies on the development of inexpensive and efficient catalysts to replace precious platinum catalysts. Here we report an electrocatalyst for hydrogen generation based on very small amounts of cobalt dispersed as individual atoms on nitrogen-doped graphene. This catalyst is robust and highly active in aqueous media with very low overpotentials (30 mV). A variety of analytical techniques and electrochemical measurements suggest that the catalytically active sites are associated with the metal centres coordinated to nitrogen. This unusual atomic constitution of supported metals is suggestive of a new approach to preparing extremely efficient single-atom catalysts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              The geographical distribution of fossil fuels unused when limiting global warming to 2 °C

              Policy makers have generally agreed that the average global temperature rise caused by greenhouse gas emissions should not exceed 2 °C above the average global temperature of pre-industrial times. It has been estimated that to have at least a 50 per cent chance of keeping warming below 2 °C throughout the twenty-first century, the cumulative carbon emissions between 2011 and 2050 need to be limited to around 1,100 gigatonnes of carbon dioxide (Gt CO2). However, the greenhouse gas emissions contained in present estimates of global fossil fuel reserves are around three times higher than this, and so the unabated use of all current fossil fuel reserves is incompatible with a warming limit of 2 °C. Here we use a single integrated assessment model that contains estimates of the quantities, locations and nature of the world's oil, gas and coal reserves and resources, and which is shown to be consistent with a wide variety of modelling approaches with different assumptions, to explore the implications of this emissions limit for fossil fuel production in different regions. Our results suggest that, globally, a third of oil reserves, half of gas reserves and over 80 per cent of current coal reserves should remain unused from 2010 to 2050 in order to meet the target of 2 °C. We show that development of resources in the Arctic and any increase in unconventional oil production are incommensurate with efforts to limit average global warming to 2 °C. Our results show that policy makers' instincts to exploit rapidly and completely their territorial fossil fuels are, in aggregate, inconsistent with their commitments to this temperature limit. Implementation of this policy commitment would also render unnecessary continued substantial expenditure on fossil fuel exploration, because any new discoveries could not lead to increased aggregate production.
                Bookmark

                Author and article information

                Journal
                Journal of Energy Chemistry
                Journal of Energy Chemistry
                Elsevier BV
                20954956
                November 2020
                November 2020
                : 50
                : 37-43
                Article
                10.1016/j.jechem.2020.03.012
                80505afa-38b5-4cb3-a95e-749412336f65
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article