12
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Authors - publish your SDGs-related research with EDP Sciences. Find out more.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of Saccharomyces pastorianus impact to Sauvignon blanc chemical & sensory profile compared to different strains of S. cerevisiae/bayanus

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Enhancing flavors and/or improving fermentation parameters through the use of different species of yeast strains is nowadays a frequent challenge in winemaking research, especially for aromatic varieties such as Sauvignon Blanc. In this work, the aim was to focus on the impact of a species not already studied in wine: Saccharomyces pastorianus. Twenty-two fermentations were conducted on a Sauvignon Blanc must by addition of different strains and mixtures of them by using two different inoculation temperatures. The must was inoculated in cold condition with two similar mixtures of S. pastorianus 1 or 2 (70%) and S. bayanus(30%), with S. pastorianus 1 or 2 alone, with the correspondent S. bayanusalone and with two other S. cerevisiae1 and 2 alone as well. For classic condition, the must was inoculated with only one mixture S. pastorianus1 (70%) / S. bayanus(30%), and respectively with S. pastorianus1, S. bayanus and S. cerevisiae 2 alone. Samples were taken all along the fermentations for both conditions in order to check chemical and microbial analyses as well as yeast implantations. The final wines were analysed for alcohol, glucose, fructose, all other classical wine analysis as well as for acetate esters, and higher alcohols. The results underlined that for both S. pastorianus 1 and S. pastorianus 2 strains, the production of acetic acid was zero in cold condition and really low (0.09 g/l) for classic condition regarding S. pastorianus 1. As a consequence, Saccharomyces pastorianus seems to be highly interesting for winemaking, alone or in co-inoculation with S. bayanus.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast.

          Domestication of plants and animals promoted humanity's transition from nomadic to sedentary lifestyles, demographic expansion, and the emergence of civilizations. In contrast to the well-documented successes of crop and livestock breeding, processes of microbe domestication remain obscure, despite the importance of microbes to the production of food, beverages, and biofuels. Lager-beer, first brewed in the 15th century, employs an allotetraploid hybrid yeast, Saccharomyces pastorianus (syn. Saccharomyces carlsbergensis), a domesticated species created by the fusion of a Saccharomyces cerevisiae ale-yeast with an unknown cryotolerant Saccharomyces species. We report the isolation of that species and designate it Saccharomyces eubayanus sp. nov. because of its resemblance to Saccharomyces bayanus (a complex hybrid of S. eubayanus, Saccharomyces uvarum, and S. cerevisiae found only in the brewing environment). Individuals from populations of S. eubayanus and its sister species, S. uvarum, exist in apparent sympatry in Nothofagus (Southern beech) forests in Patagonia, but are isolated genetically through intrinsic postzygotic barriers, and ecologically through host-preference. The draft genome sequence of S. eubayanus is 99.5% identical to the non-S. cerevisiae portion of the S. pastorianus genome sequence and suggests specific changes in sugar and sulfite metabolism that were crucial for domestication in the lager-brewing environment. This study shows that combining microbial ecology with comparative genomics facilitates the discovery and preservation of wild genetic stocks of domesticated microbes to trace their history, identify genetic changes, and suggest paths to further industrial improvement.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book: not found

            Handbook of Enology

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Genome Sequence of the Lager Brewing Yeast, an Interspecies Hybrid

              This work presents the genome sequencing of the lager brewing yeast (Saccharomyces pastorianus) Weihenstephan 34/70, a strain widely used in lager beer brewing. The 25 Mb genome comprises two nuclear sub-genomes originating from Saccharomyces cerevisiae and Saccharomyces bayanus and one circular mitochondrial genome originating from S. bayanus. Thirty-six different types of chromosomes were found including eight chromosomes with translocations between the two sub-genomes, whose breakpoints are within the orthologous open reading frames. Several gene loci responsible for typical lager brewing yeast characteristics such as maltotriose uptake and sulfite production have been increased in number by chromosomal rearrangements. Despite an overall high degree of conservation of the synteny with S. cerevisiae and S. bayanus, the syntenies were not well conserved in the sub-telomeric regions that contain lager brewing yeast characteristic and specific genes. Deletion of larger chromosomal regions, a massive unilateral decrease of the ribosomal DNA cluster and bilateral truncations of over 60 genes reflect a post-hybridization evolution process. Truncations and deletions of less efficient maltose and maltotriose uptake genes may indicate the result of adaptation to brewing. The genome sequence of this interspecies hybrid yeast provides a new tool for better understanding of lager brewing yeast behavior in industrial beer production.
                Bookmark

                Author and article information

                Journal
                BIO Web of Conferences
                BIO Web Conf.
                EDP Sciences
                2117-4458
                2019
                February 19 2019
                2019
                : 12
                : 02025
                Article
                10.1051/bioconf/20191202025
                7f9bd585-0594-4137-8873-7d420754d7d2
                © 2019

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article