7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Necroptosis is active and contributes to intestinal injury in a piglet model with lipopolysaccharide challenge

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Necroptosis, a newly discovered form of programmed cell death that combines the features of apoptosis and necrosis, is important in various physiological and pathological disorders. However, the role of necroptosis on intestinal injury during sepsis has been rarely evaluated. This study aimed to investigate the presence of necroptosis in intestinal injury, and its contribution to intestinal injury in a piglet model challenged with Escherichia coli lipopolysaccharide (LPS). Firstly, a typical cell necrotic phenomenon was observed in jejunum of LPS-challenged pigs by transmission electron microscope. Protein expression of necroptosis signals including receptor-interacting protein kinase (RIP) 1, RIP3, and phosphorylated mixed-lineage kinase domain-like protein (MLKL), mitochondrial proteins including phosphoglycerate mutase family member 5 (PGAM5) and dynamin-related protein 1 (DRP1), and cytoplasmic high-mobility group box 1 (HMGB1) were time-independently increased in jejunum of LPS-challenged piglets, which was accompanied by the impairment of jejunal morphology, and digestive and barrier function indicated by lower activities of jejunal disaccharidases and protein expression of jejunal tight junction proteins claudin-1 and occludin. Pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 were also dynamically induced in serum and jejunum of piglets after LPS challenge. Moreover, pretreatment with necrostatin-1 (Nec-1), an specific inhibitor of necroptosis, inhibited necroptosis indicated by decreased necrotic ultrastructural changes and decreased protein expression of RIP1, RIP3, and phosphorylated MLKL as well as PGAM5, DRP1, and cytoplasmic HMGB1. Nec-1 pretreatment reduced jejunal morphological injury, and improved digestive and barrier function. Nec-1 pretreatment also decreased the levels of serum and jejunal pro-inflammatory cytokines and the numbers of jejunal macrophages and monocytes. These findings indicate for the first time that necroptosis is present and contributes to LPS-induced intestinal injury. Nec-1 may have a preventive effect on intestinal injury during sepsis.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intestinal mucosal barrier function in health and disease.

            Mucosal surfaces are lined by epithelial cells. These cells establish a barrier between sometimes hostile external environments and the internal milieu. However, mucosae are also responsible for nutrient absorption and waste secretion, which require a selectively permeable barrier. These functions place the mucosal epithelium at the centre of interactions between the mucosal immune system and luminal contents, including dietary antigens and microbial products. Recent advances have uncovered mechanisms by which the intestinal mucosal barrier is regulated in response to physiological and immunological stimuli. Here I discuss these discoveries along with evidence that this regulation shapes mucosal immune responses in the gut and, when dysfunctional, may contribute to disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury.

              The mechanism of apoptosis has been extensively characterized over the past decade, but little is known about alternative forms of regulated cell death. Although stimulation of the Fas/TNFR receptor family triggers a canonical 'extrinsic' apoptosis pathway, we demonstrated that in the absence of intracellular apoptotic signaling it is capable of activating a common nonapoptotic death pathway, which we term necroptosis. We showed that necroptosis is characterized by necrotic cell death morphology and activation of autophagy. We identified a specific and potent small-molecule inhibitor of necroptosis, necrostatin-1, which blocks a critical step in necroptosis. We demonstrated that necroptosis contributes to delayed mouse ischemic brain injury in vivo through a mechanism distinct from that of apoptosis and offers a new therapeutic target for stroke with an extended window for neuroprotection. Our study identifies a previously undescribed basic cell-death pathway with potentially broad relevance to human pathologies.
                Bookmark

                Author and article information

                Contributors
                yulanflower@126.com
                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group UK (London )
                2041-4889
                11 January 2021
                11 January 2021
                January 2021
                : 12
                : 1
                : 62
                Affiliations
                GRID grid.412969.1, ISNI 0000 0004 1798 1968, Hubei Key Laboratory of Animal Nutrition and Feed Science, , Wuhan Polytechnic University, ; 430023 Wuhan, China
                Author information
                http://orcid.org/0000-0003-3320-2381
                http://orcid.org/0000-0001-9924-9209
                http://orcid.org/0000-0001-8798-8709
                http://orcid.org/0000-0001-8107-2812
                http://orcid.org/0000-0002-6440-5408
                http://orcid.org/0000-0002-0646-7141
                http://orcid.org/0000-0001-6693-3813
                http://orcid.org/0000-0002-2001-9089
                http://orcid.org/0000-0001-9870-4281
                Article
                3365
                10.1038/s41419-020-03365-1
                7801412
                33431831
                7f6d7aeb-802d-4fe8-8935-d5d937945f65
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 12 May 2020
                : 13 December 2020
                : 17 December 2020
                Funding
                Funded by: Research funding was provided by the projects of Wuhan Science and Technology Bureau (2018020401011304), National Natural Science Foundation of China (31772615), and Innovative Research Groups of the Natural Science Foundation of Hubei Province (2019CFA015).
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Cell biology
                cell death,transcription
                Cell biology
                cell death, transcription

                Comments

                Comment on this article