62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Convergence and Divergence in the Evolution of the APOBEC3G-Vif Interaction Reveal Ancient Origins of Simian Immunodeficiency Viruses

      research-article
      1 , 2 , 2 , *
      PLoS Pathogens
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Naturally circulating lentiviruses are abundant in African primate species today, yet their origins and history of transmitting between hosts remain obscure. As a means to better understand the age of primate lentiviruses, we analyzed primate genomes for signatures of lentivirus-driven evolution. Specifically, we studied the adaptive evolution of host restriction factor APOBEC3G ( A3G) in Old World Monkey (OWM) species. We find recurrent mutation of A3G in multiple primate lineages at sites that determine susceptibility to antagonism by the lentiviral accessory protein Vif. Using a broad panel of SIV Vif isolates, we demonstrate that natural variation in OWM A3G confers resistance to Vif-mediated degradation, suggesting that adaptive variants of the host factor were selected upon exposure to pathogenic lentiviruses at least 5–6 million years ago (MYA). Furthermore, in members of the divergent Colobinae subfamily of OWM, a multi-residue insertion event in A3G that arose at least 12 MYA blocks the activity of Vif, suggesting an even more ancient origin of SIV. Moreover, analysis of the lentiviruses associated with Colobinae monkeys reveal that the interface of the A3G-Vif interaction has shifted and given rise to a second genetic conflict. Our analysis of virus-driven evolution describes an ancient yet ongoing genetic conflict between simian primates and lentiviruses on a million-year time scale.

          Author Summary

          The emergence of AIDS in the late 20 th century has provoked studies to better understand the evolutionary history of viruses and the factors that govern their spread. Pandemic human immunodeficiency virus-type 1 (HIV-1), which currently infects 34 million people worldwide, emerged following the transmission of a lentivirus between chimpanzees and humans. A growing list of apparently nonpathogenic, species-specific strains has now been characterized in dozens of African primates, suggesting that primate lentiviruses are older and more widespread than originally thought. To estimate the extent to which primates and lentiviruses have coexisted, we examined the interaction between host and virus on a molecular level and tracked its dynamics over evolutionary time. We report that the immunity factor APOBEC3G is evolving in tandem with the lentiviral accessory gene vif, allowing us to associate instances of host evolution with instances of lentivirus infection in deep and shallow timescales. Specifically, we show that the region of APOBEC3G targeted by Vif is adaptively diversifying in independent primate lineages in a manner that suggests that lentiviruses are millions of years old. Our study reveals that, while primate lentiviruses may have modern consequences for human health, they have ancient origins in our non-human primate relatives.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology.

          Datamonkey is a popular web-based suite of phylogenetic analysis tools for use in evolutionary biology. Since the original release in 2005, we have expanded the analysis options to include recently developed algorithmic methods for recombination detection, evolutionary fingerprinting of genes, codon model selection, co-evolution between sites, identification of sites, which rapidly escape host-immune pressure and HIV-1 subtype assignment. The traditional selection tools have also been augmented to include recent developments in the field. Here, we summarize the analyses options currently available on Datamonkey, and provide guidelines for their use in evolutionary biology. Availability and documentation: http://www.datamonkey.org.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Vif protein of HIV triggers degradation of the human antiretroviral DNA deaminase APOBEC3G.

            APOBEC3G is a human cellular enzyme that is incorporated into retroviral particles and acts to restrict retroviral replication in infected cells by deaminating dC to dU in the first (minus)-strand cDNA replication intermediate. HIV, however, encodes a protein (virion infectivity factor, Vif ), which overcomes APOBEC3G-mediated restriction but by an unknown mechanism. Here, we show that Vif triggers APOBEC3G degradation by a proteasome-dependent pathway and that an 80 amino acid region of APOBEC3G surrounding its first zinc coordination motif is sufficient to confer the ability to partake in an interaction involving Vif. Inhibitors of this interaction might therefore prove therapeutically useful in blocking Vif-mediated APOBEC3G destruction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Purifying Selection Can Obscure the Ancient Age of Viral Lineages

              Abstract Statistical methods for molecular dating of viral origins have been used extensively to infer the time of most common recent ancestor for many rapidly evolving pathogens. However, there are a number of cases, in which epidemiological, historical, or genomic evidence suggests much older viral origins than those obtained via molecular dating. We demonstrate how pervasive purifying selection can mask the ancient origins of recently sampled pathogens, in part due to the inability of nucleotide-based substitution models to properly account for complex patterns of spatial and temporal variability in selective pressures. We use codon-based substitution models to infer the length of branches in viral phylogenies; these models produce estimates that are often considerably longer than those obtained with traditional nucleotide-based substitution models. Correcting the apparent underestimation of branch lengths suggests substantially older origins for measles, Ebola, and avian influenza viruses. This work helps to reconcile some of the inconsistencies between molecular dating and other types of evidence concerning the age of viral lineages.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                January 2013
                January 2013
                24 January 2013
                : 9
                : 1
                : e1003135
                Affiliations
                [1 ]Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
                [2 ]Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
                University of Pennsylvania School of Medicine, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AAC ME. Performed the experiments: AAC. Analyzed the data: AAC ME. Contributed reagents/materials/analysis tools: AAC. Wrote the paper: AAC ME.

                Article
                PPATHOGENS-D-12-02303
                10.1371/journal.ppat.1003135
                3554591
                23359341
                7eefb9dc-2b4d-4bf9-983a-7b210609b112
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 17 September 2012
                : 3 December 2012
                Page count
                Pages: 11
                Funding
                This work was supported by R01 A130937 (to ME) and an NSF Graduate Research Fellowship and NIH Training Grant in Viral Pathogenesis T32AI083203 (to AAC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Microbiology
                Virology
                Immunodeficiency Viruses
                Viral Evolution
                Host-Pathogen Interaction

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article