23
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immune-mediated Cerebellar Ataxias: Practical Guidelines and Therapeutic Challenges

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Immune-mediated cerebellar ataxias (IMCAs), a clinical entity reported for the first time in the 1980s, include gluten ataxia (GA), paraneoplastic cerebellar degenerations (PCDs), anti-glutamate decarboxylase 65 (GAD) antibody-associated cerebellar ataxia, post-infectious cerebellitis, and opsoclonus myoclonus syndrome (OMS). These IMCAs share common features with regard to therapeutic approaches. When certain factors trigger immune processes, elimination of the antigen(s) becomes a priority: e.g., gluten-free diet in GA and surgical excision of the primary tumor in PCDs. Furthermore, various immunotherapeutic modalities (e.g., steroids, immunoglobulins, plasmapheresis, immunosuppressants, rituximab) should be considered alone or in combination to prevent the progression of the IMCAs. There is no evidence of significant differences in terms of response and prognosis among the various types of immunotherapies. Treatment introduced at an early stage, when CAs or cerebellar atrophy is mild, is associated with better prognosis. Preservation of the “cerebellar reserve” is neces-sary for the improvement of CAs and resilience of the cerebellar networks. In this regard, we emphasize the therapeutic prin-ciple of “Time is Cerebellum” in IMCAs.

          Related collections

          Most cited references150

          • Record: found
          • Abstract: found
          • Article: not found

          The danger model: a renewed sense of self.

          For over 50 years immunologists have based their thoughts, experiments, and clinical treatments on the idea that the immune system functions by making a distinction between self and nonself. Although this paradigm has often served us well, years of detailed examination have revealed a number of inherent problems. This Viewpoint outlines a model of immunity based on the idea that the immune system is more concerned with entities that do damage than with those that are foreign.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Tumor Necrosis Factor Alpha: A Link between Neuroinflammation and Excitotoxicity

            Tumor necrosis factor alpha (TNF- α ) is a proinflammatory cytokine that exerts both homeostatic and pathophysiological roles in the central nervous system. In pathological conditions, microglia release large amounts of TNF- α ; this de novo production of TNF- α is an important component of the so-called neuroinflammatory response that is associated with several neurological disorders. In addition, TNF- α can potentiate glutamate-mediated cytotoxicity by two complementary mechanisms: indirectly, by inhibiting glutamate transport on astrocytes, and directly, by rapidly triggering the surface expression of Ca+2 permeable-AMPA receptors and NMDA receptors, while decreasing inhibitory GABAA receptors on neurons. Thus, the net effect of TNF- α is to alter the balance of excitation and inhibition resulting in a higher synaptic excitatory/inhibitory ratio. This review summarizes the current knowledge of the cellular and molecular mechanisms by which TNF- α links the neuroinflammatory and excitotoxic processes that occur in several neurodegenerative diseases, but with a special emphasis on amyotrophic lateral sclerosis (ALS). As microglial activation and upregulation of TNF- α expression is a common feature of several CNS diseases, as well as chronic opioid exposure and neuropathic pain, modulating TNF- α signaling may represent a valuable target for intervention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cerebellar circuitry as a neuronal machine.

              Masao ITO (2006)
              Shortly after John Eccles completed his studies of synaptic inhibition in the spinal cord, for which he was awarded the 1963 Nobel Prize in physiology/medicine, he opened another chapter of neuroscience with his work on the cerebellum. From 1963 to 1967, Eccles and his colleagues in Canberra successfully dissected the complex neuronal circuitry in the cerebellar cortex. In the 1967 monograph, "The Cerebellum as a Neuronal Machine", he, in collaboration with Masao Ito and Janos Szentágothai, presented blue-print-like wiring diagrams of the cerebellar neuronal circuitry. These stimulated worldwide discussions and experimentation on the potential operational mechanisms of the circuitry and spurred theoreticians to develop relevant network models of the machinelike function of the cerebellum. In following decades, the neuronal machine concept of the cerebellum was strengthened by additional knowledge of the modular organization of its structure and memory mechanism, the latter in the form of synaptic plasticity, in particular, long-term depression. Moreover, several types of motor control were established as model systems representing learning mechanisms of the cerebellum. More recently, both the quantitative preciseness of cerebellar analyses and overall knowledge about the cerebellum have advanced considerably at the cellular and molecular levels of analysis. Cerebellar circuitry now includes Lugaro cells and unipolar brush cells as additional unique elements. Other new revelations include the operation of the complex glomerulus structure, intricate signal transduction for synaptic plasticity, silent synapses, irregularity of spike discharges, temporal fidelity of synaptic activation, rhythm generators, a Golgi cell clock circuit, and sensory or motor representation by mossy fibers and climbing fibers. Furthermore, it has become evident that the cerebellum has cognitive functions, and probably also emotion, as well as better-known motor and autonomic functions. Further cerebellar research is required for full understanding of the cerebellum as a broad learning machine for neural control of these functions.
                Bookmark

                Author and article information

                Journal
                Curr Neuropharmacol
                Curr Neuropharmacol
                CN
                Current Neuropharmacology
                Bentham Science Publishers
                1570-159X
                1875-6190
                January 2019
                January 2019
                : 17
                : 1
                : 33-58
                Affiliations
                Medical Education Promotion Center, Tokyo Medical University , Tokyo, , Japan; Service des Neurosciences, UMons, 7000, Mons , Belgium; Service de Neurologie, CHU-Charleroi, 6000, Charleroi , Belgium; University of Washington, School of Medicine , Seattle, , WA, 98109 , USA
                Author notes
                [* ]Address correspondence to this author at the Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan;, E-mail: mitoma@ 123456tokyo-med.ac.jp
                Article
                CN-17-33
                10.2174/1570159X16666180917105033
                6341499
                30221603
                7e91bc32-ea97-4da1-b2e4-32fb252f1125
                © 2019 Bentham Science Publishers

                This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

                History
                : 11 March 2018
                : 06 July 2018
                : 03 September 2018
                Categories
                Article

                Pharmacology & Pharmaceutical medicine
                cerebellar ataxias,immune-mediated cerebellar ataxias,prognosis,therapy,treatment,immunotherapy,gluten ataxia,paraneoplastic cerebellar degeneration,anti-gad65ab-associated cerebellar ataxia,post-infectious cerebellitis,opsoclonus myoclonus syndrome

                Comments

                Comment on this article