9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neurological Syndromes Associated with Anti-GAD Antibodies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glutamic acid decarboxylase (GAD) is an intracellular enzyme whose physiologic function is the decarboxylation of glutamate to gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter within the central nervous system. GAD antibodies (Ab) have been associated with multiple neurological syndromes, including stiff-person syndrome, cerebellar ataxia, and limbic encephalitis, which are all considered to result from reduced GABAergic transmission. The pathogenic role of GAD Ab is still debated, and some evidence suggests that GAD autoimmunity might primarily be cell-mediated. Diagnosis relies on the detection of high titers of GAD Ab in serum and/or in the detection of GAD Ab in the cerebrospinal fluid. Due to the relative rarity of these syndromes, treatment schemes and predictors of response are poorly defined, highlighting the unmet need for multicentric prospective trials in this population. Here, we reviewed the main clinical characteristics of neurological syndromes associated with GAD Ab, focusing on pathophysiologic mechanisms.

          Related collections

          Most cited references120

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular structure and physiological functions of GABA(B) receptors.

          GABA(B) receptors are broadly expressed in the nervous system and have been implicated in a wide variety of neurological and psychiatric disorders. The cloning of the first GABA(B) receptor cDNAs in 1997 revived interest in these receptors and their potential as therapeutic targets. With the availability of molecular tools, rapid progress was made in our understanding of the GABA(B) system. This led to the surprising discovery that GABA(B) receptors need to assemble from distinct subunits to function and provided exciting new insights into the structure of G protein-coupled receptors (GPCRs) in general. As a consequence of this discovery, it is now widely accepted that GPCRs can exist as heterodimers. The cloning of GABA(B) receptors allowed some important questions in the field to be answered. It is now clear that molecular studies do not support the existence of pharmacologically distinct GABA(B) receptors, as predicted by work on native receptors. Advances were also made in clarifying the relationship between GABA(B) receptors and the receptors for gamma-hydroxybutyrate, an emerging drug of abuse. There are now the first indications linking GABA(B) receptor polymorphisms to epilepsy. Significantly, the cloning of GABA(B) receptors enabled identification of the first allosteric GABA(B) receptor compounds, which is expected to broaden the spectrum of therapeutic applications. Here we review current concepts on the molecular composition and function of GABA(B) receptors and discuss ongoing drug-discovery efforts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis.

            Classical paraneoplastic encephalitis syndromes with 'onconeural' antibodies directed to intracellular antigens, and the recently described paraneoplastic or non-paraneoplastic encephalitides and antibodies against both neural surface antigens (voltage-gated potassium channel-complexes, N-methyl-d-aspartate receptors) and intracellular antigens (glutamic acid decarboxylase-65), constitute an increasingly recognized group of immune-mediated brain diseases. Evidence for specific immune mechanisms, however, is scarce. Here, we report qualitative and quantitative immunopathology in brain tissue (biopsy or autopsy material) of 17 cases with encephalitis and antibodies to either intracellular (Hu, Ma2, glutamic acid decarboxylase) or surface antigenic targets (voltage-gated potassium channel-complex or N-methyl-d-aspartate receptors). We hypothesized that the encephalitides with antibodies against intracellular antigens (intracellular antigen-onconeural and intracellular antigen-glutamic acid decarboxylase groups) would show neurodegeneration mediated by T cell cytotoxicity and the encephalitides with antibodies against surface antigens would be antibody-mediated and would show less T cell involvement. We found a higher CD8/CD3 ratio and more frequent appositions of granzyme-B(+) cytotoxic T cells to neurons, with associated neuronal loss, in the intracellular antigen-onconeural group (anti-Hu and anti-Ma2 cases) compared to the patients with surface antigens (anti-N-methyl-d-aspartate receptors and anti-voltage-gated potassium channel complex cases). One of the glutamic acid decarboxylase antibody encephalitis cases (intracellular antigen-glutamic acid decarboxylase group) showed multiple appositions of GrB-positive T cells to neurons. Generally, however, the glutamic acid decarboxylase antibody cases showed less intense inflammation and also had relatively low CD8/CD3 ratios compared with the intracellular antigen-onconeural cases. Conversely, we found complement C9neo deposition on neurons associated with acute neuronal cell death in the surface antigen group only, specifically in the voltage-gated potassium channel-complex antibody patients. N-methyl-d-aspartate receptors-antibody cases showed no evidence of antibody and complement-mediated tissue injury and were distinguished from all other encephalitides by the absence of clear neuronal pathology and a low density of inflammatory cells. Although tissue samples varied in location and in the stage of disease, our findings strongly support a central role for T cell-mediated neuronal cytotoxicity in encephalitides with antibodies against intracellular antigens. In voltage-gated potassium channel-complex encephalitis, a subset of the surface antigen antibody encephalitides, an antibody- and complement-mediated immune response appears to be responsible for neuronal loss and cerebral atrophy; the apparent absence of these mechanisms in N-methyl-d-aspartate receptors antibody encephalitis is intriguing and requires further study.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase.

              The pancreatic islet beta-cell autoantigen of relative molecular mass 64,000 (64K), which is a major target of autoantibodies associated with the development of insulin-dependent diabetes mellitus (IDDM) has been identified as glutamic acid decarboxylase, the biosynthesizing enzyme of the inhibitory neurotransmitter GABA (gamma-aminobutyric acid). Pancreatic beta cells and a subpopulation of central nervous system neurons express high levels of this enzyme. Autoantibodies against glutamic acid decarboxylase with a higher titre and increased epitope recognition compared with those usually associated with IDDM are found in stiff-man syndrome, a rare neurological disorder characterized by a high coincidence with IDDM.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                24 May 2020
                May 2020
                : 21
                : 10
                : 3701
                Affiliations
                [1 ]AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2-Mazarin, 75013 Paris, France; maelle.dade@ 123456icm-institute.org (M.D.); giulia.berzero01@ 123456universitadipavia.it (G.B.); jean-yves.delattre@ 123456aphp.fr (J.-Y.D.); dimitri.psimaras@ 123456aphp.fr (D.P.)
                [2 ]Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013 Paris, France; marine.giry@ 123456icm-institute.org (M.G.); marion.benazra@ 123456icm-institute.org (M.B.)
                [3 ]Neuroncology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
                [4 ]Department of Neuroscience, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; cizquierdogracia1@ 123456gmail.com
                Author notes
                Article
                ijms-21-03701
                10.3390/ijms21103701
                7279468
                32456344
                33372605-1a08-4efb-b74b-557aac223e59
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 27 April 2020
                : 21 May 2020
                Categories
                Review

                Molecular biology
                glutamic acid decarboxylase,gad65 autoimmunity,neuronal antibodies,paraneoplastic neurological syndromes,limbic encephalitis,autoimmune epilepsy,cerebellar ataxia,stiff-person syndrome

                Comments

                Comment on this article