1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Harnessing disordered photonics via multi-task learning towards intelligent four-dimensional light field sensors

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The complete description of a continuous-wave light field includes its four fundamental properties: wavelength, polarization, phase and amplitude. However, the simultaneous measurement of a multi-dimensional light field of such four degrees of freedom is challenging in conventional optical systems requiring a cascade of dispersive and polarization elements. In this work, we demonstrate a disordered-photonics-assisted intelligent four-dimensional light field sensor. This is achieved by discovering that the speckle patterns, generated from light scattering in a disordered medium, are intrinsically sensitive to a high-dimension light field given their high structural degrees of freedom. Further, the multi-task-learning deep neural network is leveraged to process the single-shot light-field-encoded speckle images free from any prior knowledge of the complex disordered structures and realizes the high-accuracy recognition of full-Stokes vector, multiple orbital angular momentum (OAM), wavelength and power. The proof-of-concept study shows that the states space of four-dimensional light field spanning as high as 1680=4 (multiple-OAM) ×

          2 (OAM power spectra) ×
          15 (multiple-wavelength) ×
          14 (polarizations) can be well recognized with high accuracy in the chip-integrated sensor. Our work provides a novel paradigm for the design of optical sensors for high-dimension light fields, which can be widely applied in optical communication, holography, and imaging.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: not found
          • Article: not found

          Image Quality Assessment: From Error Visibility to Structural Similarity

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Light propagation with phase discontinuities: generalized laws of reflection and refraction.

            Conventional optical components rely on gradual phase shifts accumulated during light propagation to shape light beams. New degrees of freedom are attained by introducing abrupt phase changes over the scale of the wavelength. A two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint such phase discontinuities on propagating light as it traverses the interface between two media. Anomalous reflection and refraction phenomena are observed in this regime in optically thin arrays of metallic antennas on silicon with a linear phase variation along the interface, which are in excellent agreement with generalized laws derived from Fermat's principle. Phase discontinuities provide great flexibility in the design of light beams, as illustrated by the generation of optical vortices through use of planar designer metallic interfaces.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Flat optics with designer metasurfaces.

              Conventional optical components such as lenses, waveplates and holograms rely on light propagation over distances much larger than the wavelength to shape wavefronts. In this way substantial changes of the amplitude, phase or polarization of light waves are gradually accumulated along the optical path. This Review focuses on recent developments on flat, ultrathin optical components dubbed 'metasurfaces' that produce abrupt changes over the scale of the free-space wavelength in the phase, amplitude and/or polarization of a light beam. Metasurfaces are generally created by assembling arrays of miniature, anisotropic light scatterers (that is, resonators such as optical antennas). The spacing between antennas and their dimensions are much smaller than the wavelength. As a result the metasurfaces, on account of Huygens principle, are able to mould optical wavefronts into arbitrary shapes with subwavelength resolution by introducing spatial variations in the optical response of the light scatterers. Such gradient metasurfaces go beyond the well-established technology of frequency selective surfaces made of periodic structures and are extending to new spectral regions the functionalities of conventional microwave and millimetre-wave transmit-arrays and reflect-arrays. Metasurfaces can also be created by using ultrathin films of materials with large optical losses. By using the controllable abrupt phase shifts associated with reflection or transmission of light waves at the interface between lossy materials, such metasurfaces operate like optically thin cavities that strongly modify the light spectrum. Technology opportunities in various spectral regions and their potential advantages in replacing existing optical components are discussed.
                Bookmark

                Author and article information

                Contributors
                Journal
                PhotoniX
                PhotoniX
                Springer Science and Business Media LLC
                2662-1991
                December 2023
                August 16 2023
                : 4
                : 1
                Article
                10.1186/s43074-023-00102-7
                7dfab8ff-f74a-4b72-8635-1459855a792a
                © 2023

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article